Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk34 Structured version   Unicode version

Theorem cdlemk34 34552
Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. (Contributed by NM, 18-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b  |-  B  =  ( Base `  K
)
cdlemk3.l  |-  .<_  =  ( le `  K )
cdlemk3.j  |-  .\/  =  ( join `  K )
cdlemk3.m  |-  ./\  =  ( meet `  K )
cdlemk3.a  |-  A  =  ( Atoms `  K )
cdlemk3.h  |-  H  =  ( LHyp `  K
)
cdlemk3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk3.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk3.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk3.u1  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
cdlemk3.x  |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  z  =  ( b Y G ) ) )
Assertion
Ref Expression
cdlemk34  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) ) )
Distinct variable groups:    e, d,
f, i,  ./\    .<_ , i    .\/ , d, e, f, i    A, i    j, d, e, f, i, F    G, d,
e, j    i, H    i, K    f, N, i    P, d, e, f, i    R, d, e, f, i    T, d, e, f, i    W, d, e, f, i, b    ./\ , j    .<_ , j    .\/ , j    A, j    j, F   
j, H    j, K    j, N    P, j    R, j   
b, d, S, e, j    T, j    j, W    F, d, e    .<_ , e    f, G, i    .<_ , b    A, b, z    B, b, z    F, b, z    G, b, z    H, b    K, b    N, b    P, b    R, b, z    T, b, z    W, b, z    Y, b, z   
z, d, e, f, i, j    z,  .<_    z, A    z, H    z, K    z, N    z, P
Allowed substitution hints:    A( e, f, d)    B( e, f, i, j, d)    S( z, f, i)    H( e, f, d)    .\/ ( z, b)    K( e, f, d)    .<_ ( f, d)    ./\ ( z, b)    N( e, d)    X( z, e, f, i, j, b, d)    Y( e, f, i, j, d)

Proof of Theorem cdlemk34
StepHypRef Expression
1 cdlemk3.x . 2  |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  z  =  ( b Y G ) ) )
2 fveq1 5689 . . . . . . . . 9  |-  ( z  =  ( b Y G )  ->  (
z `  P )  =  ( ( b Y G ) `  P ) )
3 simpll1 1027 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
4 simplr1 1030 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  z  e.  T )
5 simpl1 991 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simpl3r 1044 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( R `  F )  =  ( R `  N ) )
7 simp22l 1107 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  G  e.  T )
87adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  G  e.  T
)
95, 6, 83jca 1168 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T ) )
109adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T ) )
11 simp21l 1105 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  F  e.  T )
1211adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  F  e.  T
)
13 simpr2 995 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  b  e.  T
)
14 simpl23 1068 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  N  e.  T
)
1512, 13, 143jca 1168 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( F  e.  T  /\  b  e.  T  /\  N  e.  T ) )
1615adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( F  e.  T  /\  b  e.  T  /\  N  e.  T ) )
17 simpr32 1079 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( R `  b )  =/=  ( R `  F )
)
18 simpr33 1080 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( R `  b )  =/=  ( R `  G )
)
1917, 18jca 532 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( ( R `
 b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
) )
2019adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
) )
21 simp21r 1106 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  F  =/=  (  _I  |`  B ) )
2221adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  F  =/=  (  _I  |`  B ) )
23 simp22r 1108 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  G  =/=  (  _I  |`  B ) )
2423adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  G  =/=  (  _I  |`  B ) )
25 simpr31 1078 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  b  =/=  (  _I  |`  B ) )
2622, 24, 253jca 1168 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B ) ) )
2726adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B ) ) )
28 simpl3l 1043 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
2928adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
30 cdlemk3.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  K
)
31 cdlemk3.l . . . . . . . . . . . . 13  |-  .<_  =  ( le `  K )
32 cdlemk3.j . . . . . . . . . . . . 13  |-  .\/  =  ( join `  K )
33 cdlemk3.m . . . . . . . . . . . . 13  |-  ./\  =  ( meet `  K )
34 cdlemk3.a . . . . . . . . . . . . 13  |-  A  =  ( Atoms `  K )
35 cdlemk3.h . . . . . . . . . . . . 13  |-  H  =  ( LHyp `  K
)
36 cdlemk3.t . . . . . . . . . . . . 13  |-  T  =  ( ( LTrn `  K
) `  W )
37 cdlemk3.r . . . . . . . . . . . . 13  |-  R  =  ( ( trL `  K
) `  W )
38 cdlemk3.s . . . . . . . . . . . . 13  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
39 cdlemk3.u1 . . . . . . . . . . . . 13  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
4030, 31, 32, 33, 34, 35, 36, 37, 38, 39cdlemkuel-3 34540 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T )  /\  ( F  e.  T  /\  b  e.  T  /\  N  e.  T )  /\  ( ( ( R `
 b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( b Y G )  e.  T
)
4110, 16, 20, 27, 29, 40syl113anc 1230 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( b Y G )  e.  T
)
42 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( z `  P )  =  ( ( b Y G ) `  P ) )
4331, 34, 35, 36cdlemd 33849 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  z  e.  T  /\  (
b Y G )  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  z  =  ( b Y G ) )
443, 4, 41, 29, 42, 43syl311anc 1232 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  z  =  ( b Y G ) )
4544ex 434 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( ( z `
 P )  =  ( ( b Y G ) `  P
)  ->  z  =  ( b Y G ) ) )
462, 45impbid2 204 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( z  =  ( b Y G )  <->  ( z `  P )  =  ( ( b Y G ) `  P ) ) )
47 simp1 988 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
48 simp3r 1017 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  F )  =  ( R `  N ) )
4947, 48jca 532 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) ) )
5049adantr 465 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) ) )
5122, 25, 243jca 1168 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( F  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) ) )
5230, 31, 32, 33, 34, 35, 36, 37, 38, 39cdlemk32 34539 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  b  e.  T  /\  N  e.  T )  /\  G  e.  T )  /\  (
( ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( (
b Y G ) `
 P )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) )
5350, 15, 8, 19, 51, 28, 52syl123anc 1235 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( ( b Y G ) `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) )
5453eqeq2d 2453 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( ( z `
 P )  =  ( ( b Y G ) `  P
)  <->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) )
5546, 54bitrd 253 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  ->  ( z  =  ( b Y G )  <->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) )
56553exp2 1205 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  (
z  e.  T  -> 
( b  e.  T  ->  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z  =  ( b Y G )  <->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) ) ) ) )
5756imp31 432 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  z  e.  T )  /\  b  e.  T )  ->  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  (
z  =  ( b Y G )  <->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) ) )
5857pm5.74d 247 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  z  e.  T )  /\  b  e.  T )  ->  (
( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  z  =  ( b Y G ) )  <->  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) ) )
5958ralbidva 2730 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  z  e.  T )  ->  ( A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  z  =  ( b Y G ) )  <->  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) ) )
6059riotabidva 6068 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( iota_ z  e.  T  A. b  e.  T  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  z  =  ( b Y G ) ) )  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) ) )
611, 60syl5eq 2486 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2605   A.wral 2714   class class class wbr 4291    e. cmpt 4349    _I cid 4630   `'ccnv 4838    |` cres 4841    o. ccom 4843   ` cfv 5417   iota_crio 6050  (class class class)co 6090    e. cmpt2 6092   Basecbs 14173   lecple 14244   joincjn 15113   meetcmee 15114   Atomscatm 32906   HLchlt 32993   LHypclh 33626   LTrncltrn 33743   trLctrl 33800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-riotaBAD 32602
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-iun 4172  df-iin 4173  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-undef 6791  df-map 7215  df-poset 15115  df-plt 15127  df-lub 15143  df-glb 15144  df-join 15145  df-meet 15146  df-p0 15208  df-p1 15209  df-lat 15215  df-clat 15277  df-oposet 32819  df-ol 32821  df-oml 32822  df-covers 32909  df-ats 32910  df-atl 32941  df-cvlat 32965  df-hlat 32994  df-llines 33140  df-lplanes 33141  df-lvols 33142  df-lines 33143  df-psubsp 33145  df-pmap 33146  df-padd 33438  df-lhyp 33630  df-laut 33631  df-ldil 33746  df-ltrn 33747  df-trl 33801
This theorem is referenced by:  cdlemk35  34554
  Copyright terms: Public domain W3C validator