Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk28-3 Structured version   Unicode version

Theorem cdlemk28-3 34393
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 14-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b  |-  B  =  ( Base `  K
)
cdlemk3.l  |-  .<_  =  ( le `  K )
cdlemk3.j  |-  .\/  =  ( join `  K )
cdlemk3.m  |-  ./\  =  ( meet `  K )
cdlemk3.a  |-  A  =  ( Atoms `  K )
cdlemk3.h  |-  H  =  ( LHyp `  K
)
cdlemk3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk3.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk3.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk3.u1  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
Assertion
Ref Expression
cdlemk28-3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  E. z  e.  T  A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  z  =  ( b Y G ) ) )
Distinct variable groups:    e, d,
f, i,  ./\    .<_ , i    .\/ , d, e, f, i    A, i    j, d, e, f, i, F    G, d,
e, j    i, H    i, K    f, N, i    P, d, e, f, i    R, d, e, f, i    T, d, e, f, i    W, d, e, f, i, b    ./\ , j    .<_ , j    .\/ , j    A, j    j, F   
j, H    j, K    j, N    P, j    R, j   
b, d, S, e, j    T, j    j, W    F, d, e    .<_ , e    f, G, i    .<_ , b    A, b   
z, b, B    F, b, z    G, b, z    H, b    K, b    N, b    P, b    R, b, z    T, b, z    W, b, z    Y, b, z   
z, d, e, f, i, j
Allowed substitution hints:    A( z, e, f, d)    B( e, f, i, j, d)    P( z)    S( z, f, i)    H( z, e, f, d)    .\/ ( z, b)    K( z, e, f, d)    .<_ ( z, f, d)    ./\ ( z, b)    N( z, e, d)    Y( e, f, i, j, d)

Proof of Theorem cdlemk28-3
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simp1 1005 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21l 1122 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  F  e.  T )
3 simp21r 1123 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  F  =/=  (  _I  |`  B ) )
4 simp23 1040 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  N  e.  T )
52, 3, 43jca 1185 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
) )
6 simp22l 1124 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  G  e.  T )
7 simp22r 1125 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  G  =/=  (  _I  |`  B ) )
8 simp3r 1034 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  F )  =  ( R `  N ) )
96, 7, 83jca 1185 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )
10 simp3l 1033 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
11 cdlemk3.b . . . 4  |-  B  =  ( Base `  K
)
12 cdlemk3.l . . . 4  |-  .<_  =  ( le `  K )
13 cdlemk3.j . . . 4  |-  .\/  =  ( join `  K )
14 cdlemk3.m . . . 4  |-  ./\  =  ( meet `  K )
15 cdlemk3.a . . . 4  |-  A  =  ( Atoms `  K )
16 cdlemk3.h . . . 4  |-  H  =  ( LHyp `  K
)
17 cdlemk3.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
18 cdlemk3.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
19 cdlemk3.s . . . 4  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
20 cdlemk3.u1 . . . 4  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
2111, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk26b-3 34390 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( b Y G )  e.  T
) )
221, 5, 9, 10, 21syl31anc 1267 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  E. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( b Y G )  e.  T
) )
23 simp11 1035 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2423ad2ant1 1026 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  F  e.  T )
25 simp2l 1031 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  b  e.  T )
26 simp123 1139 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  N  e.  T )
2724, 25, 263jca 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( F  e.  T  /\  b  e.  T  /\  N  e.  T )
)
2863ad2ant1 1026 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  G  e.  T )
29 simp2r 1032 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  a  e.  T )
3028, 29jca 534 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( G  e.  T  /\  a  e.  T )
)
31 simp13l 1120 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
32 simp13r 1121 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  F )  =  ( R `  N ) )
3333ad2ant1 1026 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  F  =/=  (  _I  |`  B ) )
34 simp3l1 1110 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  b  =/=  (  _I  |`  B ) )
3532, 33, 343jca 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  (
( R `  F
)  =  ( R `
 N )  /\  F  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B ) ) )
3673ad2ant1 1026 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  G  =/=  (  _I  |`  B ) )
37 simp3r1 1113 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  a  =/=  (  _I  |`  B ) )
3836, 37jca 534 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( G  =/=  (  _I  |`  B )  /\  a  =/=  (  _I  |`  B ) ) )
39 simp3r3 1115 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  a )  =/=  ( R `  G
) )
4039necomd 2695 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  G )  =/=  ( R `  a
) )
41 simp3r2 1114 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  a )  =/=  ( R `  F
) )
42 simp3l2 1111 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  b )  =/=  ( R `  F
) )
4340, 41, 423jca 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  (
( R `  G
)  =/=  ( R `
 a )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  F
) ) )
44 simp3l3 1112 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  b )  =/=  ( R `  G
) )
4544necomd 2695 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  G )  =/=  ( R `  b
) )
4611, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk27-3 34392 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  b  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  a  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  a  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 a )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  b
) ) )  -> 
( b Y G )  =  ( a Y G ) )
4723, 27, 30, 31, 35, 38, 43, 45, 46syl332anc 1295 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  (
b Y G )  =  ( a Y G ) )
48473exp 1204 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  (
( b  e.  T  /\  a  e.  T
)  ->  ( (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  /\  (
a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F
)  /\  ( R `  a )  =/=  ( R `  G )
) )  ->  (
b Y G )  =  ( a Y G ) ) ) )
4948ralrimivv 2845 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  A. b  e.  T  A. a  e.  T  ( (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  /\  (
a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F
)  /\  ( R `  a )  =/=  ( R `  G )
) )  ->  (
b Y G )  =  ( a Y G ) ) )
50 neeq1 2705 . . . . 5  |-  ( b  =  a  ->  (
b  =/=  (  _I  |`  B )  <->  a  =/=  (  _I  |`  B ) ) )
51 fveq2 5877 . . . . . 6  |-  ( b  =  a  ->  ( R `  b )  =  ( R `  a ) )
5251neeq1d 2701 . . . . 5  |-  ( b  =  a  ->  (
( R `  b
)  =/=  ( R `
 F )  <->  ( R `  a )  =/=  ( R `  F )
) )
5351neeq1d 2701 . . . . 5  |-  ( b  =  a  ->  (
( R `  b
)  =/=  ( R `
 G )  <->  ( R `  a )  =/=  ( R `  G )
) )
5450, 52, 533anbi123d 1335 . . . 4  |-  ( b  =  a  ->  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  <->  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )
55 oveq1 6308 . . . 4  |-  ( b  =  a  ->  (
b Y G )  =  ( a Y G ) )
5654, 55reusv3 4628 . . 3  |-  ( E. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  /\  (
b Y G )  e.  T )  -> 
( A. b  e.  T  A. a  e.  T  ( ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) )  ->  ( b Y G )  =  ( a Y G ) )  <->  E. z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  z  =  ( b Y G ) ) ) )
5756biimpd 210 . 2  |-  ( E. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  /\  (
b Y G )  e.  T )  -> 
( A. b  e.  T  A. a  e.  T  ( ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) )  ->  ( b Y G )  =  ( a Y G ) )  ->  E. z  e.  T  A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  z  =  ( b Y G ) ) ) )
5822, 49, 57sylc 62 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  E. z  e.  T  A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  z  =  ( b Y G ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   E.wrex 2776   class class class wbr 4420    |-> cmpt 4479    _I cid 4759   `'ccnv 4848    |` cres 4851    o. ccom 4853   ` cfv 5597   iota_crio 6262  (class class class)co 6301    |-> cmpt2 6303   Basecbs 15108   lecple 15184   joincjn 16176   meetcmee 16177   Atomscatm 32747   HLchlt 32834   LHypclh 33467   LTrncltrn 33584   trLctrl 33642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-riotaBAD 32443
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-1st 6803  df-2nd 6804  df-undef 7024  df-map 7478  df-preset 16160  df-poset 16178  df-plt 16191  df-lub 16207  df-glb 16208  df-join 16209  df-meet 16210  df-p0 16272  df-p1 16273  df-lat 16279  df-clat 16341  df-oposet 32660  df-ol 32662  df-oml 32663  df-covers 32750  df-ats 32751  df-atl 32782  df-cvlat 32806  df-hlat 32835  df-llines 32981  df-lplanes 32982  df-lvols 32983  df-lines 32984  df-psubsp 32986  df-pmap 32987  df-padd 33279  df-lhyp 33471  df-laut 33472  df-ldil 33587  df-ltrn 33588  df-trl 33643
This theorem is referenced by:  cdlemk29-3  34396
  Copyright terms: Public domain W3C validator