Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk28-3 Structured version   Unicode version

Theorem cdlemk28-3 34910
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 14-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b  |-  B  =  ( Base `  K
)
cdlemk3.l  |-  .<_  =  ( le `  K )
cdlemk3.j  |-  .\/  =  ( join `  K )
cdlemk3.m  |-  ./\  =  ( meet `  K )
cdlemk3.a  |-  A  =  ( Atoms `  K )
cdlemk3.h  |-  H  =  ( LHyp `  K
)
cdlemk3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk3.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk3.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk3.u1  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
Assertion
Ref Expression
cdlemk28-3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  E. z  e.  T  A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  z  =  ( b Y G ) ) )
Distinct variable groups:    e, d,
f, i,  ./\    .<_ , i    .\/ , d, e, f, i    A, i    j, d, e, f, i, F    G, d,
e, j    i, H    i, K    f, N, i    P, d, e, f, i    R, d, e, f, i    T, d, e, f, i    W, d, e, f, i, b    ./\ , j    .<_ , j    .\/ , j    A, j    j, F   
j, H    j, K    j, N    P, j    R, j   
b, d, S, e, j    T, j    j, W    F, d, e    .<_ , e    f, G, i    .<_ , b    A, b   
z, b, B    F, b, z    G, b, z    H, b    K, b    N, b    P, b    R, b, z    T, b, z    W, b, z    Y, b, z   
z, d, e, f, i, j
Allowed substitution hints:    A( z, e, f, d)    B( e, f, i, j, d)    P( z)    S( z, f, i)    H( z, e, f, d)    .\/ ( z, b)    K( z, e, f, d)    .<_ ( z, f, d)    ./\ ( z, b)    N( z, e, d)    Y( e, f, i, j, d)

Proof of Theorem cdlemk28-3
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simp1 988 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21l 1105 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  F  e.  T )
3 simp21r 1106 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  F  =/=  (  _I  |`  B ) )
4 simp23 1023 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  N  e.  T )
52, 3, 43jca 1168 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
) )
6 simp22l 1107 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  G  e.  T )
7 simp22r 1108 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  G  =/=  (  _I  |`  B ) )
8 simp3r 1017 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  F )  =  ( R `  N ) )
96, 7, 83jca 1168 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )
10 simp3l 1016 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
11 cdlemk3.b . . . 4  |-  B  =  ( Base `  K
)
12 cdlemk3.l . . . 4  |-  .<_  =  ( le `  K )
13 cdlemk3.j . . . 4  |-  .\/  =  ( join `  K )
14 cdlemk3.m . . . 4  |-  ./\  =  ( meet `  K )
15 cdlemk3.a . . . 4  |-  A  =  ( Atoms `  K )
16 cdlemk3.h . . . 4  |-  H  =  ( LHyp `  K
)
17 cdlemk3.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
18 cdlemk3.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
19 cdlemk3.s . . . 4  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
20 cdlemk3.u1 . . . 4  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
2111, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk26b-3 34907 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( b Y G )  e.  T
) )
221, 5, 9, 10, 21syl31anc 1222 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  E. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( b Y G )  e.  T
) )
23 simp11 1018 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2423ad2ant1 1009 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  F  e.  T )
25 simp2l 1014 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  b  e.  T )
26 simp123 1122 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  N  e.  T )
2724, 25, 263jca 1168 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( F  e.  T  /\  b  e.  T  /\  N  e.  T )
)
2863ad2ant1 1009 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  G  e.  T )
29 simp2r 1015 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  a  e.  T )
3028, 29jca 532 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( G  e.  T  /\  a  e.  T )
)
31 simp13l 1103 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
32 simp13r 1104 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  F )  =  ( R `  N ) )
3333ad2ant1 1009 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  F  =/=  (  _I  |`  B ) )
34 simp3l1 1093 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  b  =/=  (  _I  |`  B ) )
3532, 33, 343jca 1168 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  (
( R `  F
)  =  ( R `
 N )  /\  F  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B ) ) )
3673ad2ant1 1009 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  G  =/=  (  _I  |`  B ) )
37 simp3r1 1096 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  a  =/=  (  _I  |`  B ) )
3836, 37jca 532 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( G  =/=  (  _I  |`  B )  /\  a  =/=  (  _I  |`  B ) ) )
39 simp3r3 1098 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  a )  =/=  ( R `  G
) )
4039necomd 2723 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  G )  =/=  ( R `  a
) )
41 simp3r2 1097 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  a )  =/=  ( R `  F
) )
42 simp3l2 1094 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  b )  =/=  ( R `  F
) )
4340, 41, 423jca 1168 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  (
( R `  G
)  =/=  ( R `
 a )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  F
) ) )
44 simp3l3 1095 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  b )  =/=  ( R `  G
) )
4544necomd 2723 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  G )  =/=  ( R `  b
) )
4611, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk27-3 34909 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  b  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  a  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  a  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 a )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  b
) ) )  -> 
( b Y G )  =  ( a Y G ) )
4723, 27, 30, 31, 35, 38, 43, 45, 46syl332anc 1250 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  (
b Y G )  =  ( a Y G ) )
48473exp 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  (
( b  e.  T  /\  a  e.  T
)  ->  ( (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  /\  (
a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F
)  /\  ( R `  a )  =/=  ( R `  G )
) )  ->  (
b Y G )  =  ( a Y G ) ) ) )
4948ralrimivv 2913 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  A. b  e.  T  A. a  e.  T  ( (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  /\  (
a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F
)  /\  ( R `  a )  =/=  ( R `  G )
) )  ->  (
b Y G )  =  ( a Y G ) ) )
50 neeq1 2733 . . . . 5  |-  ( b  =  a  ->  (
b  =/=  (  _I  |`  B )  <->  a  =/=  (  _I  |`  B ) ) )
51 fveq2 5802 . . . . . 6  |-  ( b  =  a  ->  ( R `  b )  =  ( R `  a ) )
5251neeq1d 2729 . . . . 5  |-  ( b  =  a  ->  (
( R `  b
)  =/=  ( R `
 F )  <->  ( R `  a )  =/=  ( R `  F )
) )
5351neeq1d 2729 . . . . 5  |-  ( b  =  a  ->  (
( R `  b
)  =/=  ( R `
 G )  <->  ( R `  a )  =/=  ( R `  G )
) )
5450, 52, 533anbi123d 1290 . . . 4  |-  ( b  =  a  ->  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  <->  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )
55 oveq1 6210 . . . 4  |-  ( b  =  a  ->  (
b Y G )  =  ( a Y G ) )
5654, 55reusv3 4611 . . 3  |-  ( E. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  /\  (
b Y G )  e.  T )  -> 
( A. b  e.  T  A. a  e.  T  ( ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) )  ->  ( b Y G )  =  ( a Y G ) )  <->  E. z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  z  =  ( b Y G ) ) ) )
5756biimpd 207 . 2  |-  ( E. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  /\  (
b Y G )  e.  T )  -> 
( A. b  e.  T  A. a  e.  T  ( ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) )  ->  ( b Y G )  =  ( a Y G ) )  ->  E. z  e.  T  A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  z  =  ( b Y G ) ) ) )
5822, 49, 57sylc 60 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  E. z  e.  T  A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  z  =  ( b Y G ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   E.wrex 2800   class class class wbr 4403    |-> cmpt 4461    _I cid 4742   `'ccnv 4950    |` cres 4953    o. ccom 4955   ` cfv 5529   iota_crio 6163  (class class class)co 6203    |-> cmpt2 6205   Basecbs 14295   lecple 14367   joincjn 15236   meetcmee 15237   Atomscatm 33266   HLchlt 33353   LHypclh 33986   LTrncltrn 34103   trLctrl 34160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-riotaBAD 32962
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-undef 6905  df-map 7329  df-poset 15238  df-plt 15250  df-lub 15266  df-glb 15267  df-join 15268  df-meet 15269  df-p0 15331  df-p1 15332  df-lat 15338  df-clat 15400  df-oposet 33179  df-ol 33181  df-oml 33182  df-covers 33269  df-ats 33270  df-atl 33301  df-cvlat 33325  df-hlat 33354  df-llines 33500  df-lplanes 33501  df-lvols 33502  df-lines 33503  df-psubsp 33505  df-pmap 33506  df-padd 33798  df-lhyp 33990  df-laut 33991  df-ldil 34106  df-ltrn 34107  df-trl 34161
This theorem is referenced by:  cdlemk29-3  34913
  Copyright terms: Public domain W3C validator