Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk28-3 Structured version   Unicode version

Theorem cdlemk28-3 36777
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 14-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b  |-  B  =  ( Base `  K
)
cdlemk3.l  |-  .<_  =  ( le `  K )
cdlemk3.j  |-  .\/  =  ( join `  K )
cdlemk3.m  |-  ./\  =  ( meet `  K )
cdlemk3.a  |-  A  =  ( Atoms `  K )
cdlemk3.h  |-  H  =  ( LHyp `  K
)
cdlemk3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk3.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk3.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk3.u1  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
Assertion
Ref Expression
cdlemk28-3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  E. z  e.  T  A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  z  =  ( b Y G ) ) )
Distinct variable groups:    e, d,
f, i,  ./\    .<_ , i    .\/ , d, e, f, i    A, i    j, d, e, f, i, F    G, d,
e, j    i, H    i, K    f, N, i    P, d, e, f, i    R, d, e, f, i    T, d, e, f, i    W, d, e, f, i, b    ./\ , j    .<_ , j    .\/ , j    A, j    j, F   
j, H    j, K    j, N    P, j    R, j   
b, d, S, e, j    T, j    j, W    F, d, e    .<_ , e    f, G, i    .<_ , b    A, b   
z, b, B    F, b, z    G, b, z    H, b    K, b    N, b    P, b    R, b, z    T, b, z    W, b, z    Y, b, z   
z, d, e, f, i, j
Allowed substitution hints:    A( z, e, f, d)    B( e, f, i, j, d)    P( z)    S( z, f, i)    H( z, e, f, d)    .\/ ( z, b)    K( z, e, f, d)    .<_ ( z, f, d)    ./\ ( z, b)    N( z, e, d)    Y( e, f, i, j, d)

Proof of Theorem cdlemk28-3
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simp1 996 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21l 1113 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  F  e.  T )
3 simp21r 1114 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  F  =/=  (  _I  |`  B ) )
4 simp23 1031 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  N  e.  T )
52, 3, 43jca 1176 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
) )
6 simp22l 1115 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  G  e.  T )
7 simp22r 1116 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  G  =/=  (  _I  |`  B ) )
8 simp3r 1025 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  F )  =  ( R `  N ) )
96, 7, 83jca 1176 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )
10 simp3l 1024 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
11 cdlemk3.b . . . 4  |-  B  =  ( Base `  K
)
12 cdlemk3.l . . . 4  |-  .<_  =  ( le `  K )
13 cdlemk3.j . . . 4  |-  .\/  =  ( join `  K )
14 cdlemk3.m . . . 4  |-  ./\  =  ( meet `  K )
15 cdlemk3.a . . . 4  |-  A  =  ( Atoms `  K )
16 cdlemk3.h . . . 4  |-  H  =  ( LHyp `  K
)
17 cdlemk3.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
18 cdlemk3.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
19 cdlemk3.s . . . 4  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
20 cdlemk3.u1 . . . 4  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
2111, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk26b-3 36774 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( b Y G )  e.  T
) )
221, 5, 9, 10, 21syl31anc 1231 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  E. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( b Y G )  e.  T
) )
23 simp11 1026 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2423ad2ant1 1017 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  F  e.  T )
25 simp2l 1022 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  b  e.  T )
26 simp123 1130 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  N  e.  T )
2724, 25, 263jca 1176 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( F  e.  T  /\  b  e.  T  /\  N  e.  T )
)
2863ad2ant1 1017 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  G  e.  T )
29 simp2r 1023 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  a  e.  T )
3028, 29jca 532 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( G  e.  T  /\  a  e.  T )
)
31 simp13l 1111 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
32 simp13r 1112 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  F )  =  ( R `  N ) )
3333ad2ant1 1017 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  F  =/=  (  _I  |`  B ) )
34 simp3l1 1101 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  b  =/=  (  _I  |`  B ) )
3532, 33, 343jca 1176 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  (
( R `  F
)  =  ( R `
 N )  /\  F  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B ) ) )
3673ad2ant1 1017 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  G  =/=  (  _I  |`  B ) )
37 simp3r1 1104 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  a  =/=  (  _I  |`  B ) )
3836, 37jca 532 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( G  =/=  (  _I  |`  B )  /\  a  =/=  (  _I  |`  B ) ) )
39 simp3r3 1106 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  a )  =/=  ( R `  G
) )
4039necomd 2728 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  G )  =/=  ( R `  a
) )
41 simp3r2 1105 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  a )  =/=  ( R `  F
) )
42 simp3l2 1102 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  b )  =/=  ( R `  F
) )
4340, 41, 423jca 1176 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  (
( R `  G
)  =/=  ( R `
 a )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  F
) ) )
44 simp3l3 1103 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  b )  =/=  ( R `  G
) )
4544necomd 2728 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  G )  =/=  ( R `  b
) )
4611, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk27-3 36776 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  b  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  a  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  a  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 a )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  b
) ) )  -> 
( b Y G )  =  ( a Y G ) )
4723, 27, 30, 31, 35, 38, 43, 45, 46syl332anc 1259 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  (
b  e.  T  /\  a  e.  T )  /\  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )  ->  (
b Y G )  =  ( a Y G ) )
48473exp 1195 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  (
( b  e.  T  /\  a  e.  T
)  ->  ( (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  /\  (
a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F
)  /\  ( R `  a )  =/=  ( R `  G )
) )  ->  (
b Y G )  =  ( a Y G ) ) ) )
4948ralrimivv 2877 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  A. b  e.  T  A. a  e.  T  ( (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  /\  (
a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F
)  /\  ( R `  a )  =/=  ( R `  G )
) )  ->  (
b Y G )  =  ( a Y G ) ) )
50 neeq1 2738 . . . . 5  |-  ( b  =  a  ->  (
b  =/=  (  _I  |`  B )  <->  a  =/=  (  _I  |`  B ) ) )
51 fveq2 5872 . . . . . 6  |-  ( b  =  a  ->  ( R `  b )  =  ( R `  a ) )
5251neeq1d 2734 . . . . 5  |-  ( b  =  a  ->  (
( R `  b
)  =/=  ( R `
 F )  <->  ( R `  a )  =/=  ( R `  F )
) )
5351neeq1d 2734 . . . . 5  |-  ( b  =  a  ->  (
( R `  b
)  =/=  ( R `
 G )  <->  ( R `  a )  =/=  ( R `  G )
) )
5450, 52, 533anbi123d 1299 . . . 4  |-  ( b  =  a  ->  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  <->  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) ) )
55 oveq1 6303 . . . 4  |-  ( b  =  a  ->  (
b Y G )  =  ( a Y G ) )
5654, 55reusv3 4664 . . 3  |-  ( E. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  /\  (
b Y G )  e.  T )  -> 
( A. b  e.  T  A. a  e.  T  ( ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) )  ->  ( b Y G )  =  ( a Y G ) )  <->  E. z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  z  =  ( b Y G ) ) ) )
5756biimpd 207 . 2  |-  ( E. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  /\  (
b Y G )  e.  T )  -> 
( A. b  e.  T  A. a  e.  T  ( ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( a  =/=  (  _I  |`  B )  /\  ( R `  a )  =/=  ( R `  F )  /\  ( R `  a
)  =/=  ( R `
 G ) ) )  ->  ( b Y G )  =  ( a Y G ) )  ->  E. z  e.  T  A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  z  =  ( b Y G ) ) ) )
5822, 49, 57sylc 60 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  E. z  e.  T  A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  z  =  ( b Y G ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   class class class wbr 4456    |-> cmpt 4515    _I cid 4799   `'ccnv 5007    |` cres 5010    o. ccom 5012   ` cfv 5594   iota_crio 6257  (class class class)co 6296    |-> cmpt2 6298   Basecbs 14644   lecple 14719   joincjn 15700   meetcmee 15701   Atomscatm 35131   HLchlt 35218   LHypclh 35851   LTrncltrn 35968   trLctrl 36026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-riotaBAD 34827
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-undef 7020  df-map 7440  df-preset 15684  df-poset 15702  df-plt 15715  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-p0 15796  df-p1 15797  df-lat 15803  df-clat 15865  df-oposet 35044  df-ol 35046  df-oml 35047  df-covers 35134  df-ats 35135  df-atl 35166  df-cvlat 35190  df-hlat 35219  df-llines 35365  df-lplanes 35366  df-lvols 35367  df-lines 35368  df-psubsp 35370  df-pmap 35371  df-padd 35663  df-lhyp 35855  df-laut 35856  df-ldil 35971  df-ltrn 35972  df-trl 36027
This theorem is referenced by:  cdlemk29-3  36780
  Copyright terms: Public domain W3C validator