Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk26-3 Structured version   Unicode version

Theorem cdlemk26-3 36334
Description: Part of proof of Lemma K of [Crawley] p. 118. Eliminate the  x requirements from cdlemk25-3 36332. (Contributed by NM, 10-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b  |-  B  =  ( Base `  K
)
cdlemk3.l  |-  .<_  =  ( le `  K )
cdlemk3.j  |-  .\/  =  ( join `  K )
cdlemk3.m  |-  ./\  =  ( meet `  K )
cdlemk3.a  |-  A  =  ( Atoms `  K )
cdlemk3.h  |-  H  =  ( LHyp `  K
)
cdlemk3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk3.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk3.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk3.u1  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
Assertion
Ref Expression
cdlemk26-3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  -> 
( ( D Y G ) `  P
)  =  ( ( C Y G ) `
 P ) )
Distinct variable groups:    e, d,
f, i,  ./\    .<_ , i    .\/ , d, e, f, i    A, i    j, d, D, e, f, i    f, F, i    G, d, e, j   
i, H    i, K    f, N, i    P, d, e, f, i    R, d, e, f, i    T, d, e, f, i    W, d, e, f, i    ./\ , j    .<_ , j    .\/ , j    A, j    j, F    j, H    j, K    j, N    P, j    R, j    S, d, e, j    T, j    j, W    F, d, e    .<_ , e    C, d, e, f, i, j   
f, G, i
Allowed substitution hints:    A( e, f, d)    B( e, f, i, j, d)    S( f, i)    H( e, f, d)    K( e, f, d)    .<_ ( f, d)    N( e, d)    Y( e, f, i, j, d)

Proof of Theorem cdlemk26-3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp11l 1106 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  K  e.  HL )
2 simp11r 1107 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  W  e.  H )
3 cdlemk3.b . . . 4  |-  B  =  ( Base `  K
)
4 cdlemk3.h . . . 4  |-  H  =  ( LHyp `  K
)
5 cdlemk3.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
6 cdlemk3.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
73, 4, 5, 6cdlemftr3 35993 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. x  e.  T  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )
81, 2, 7syl2anc 661 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  E. x  e.  T  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )
9 simp111 1124 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
10 simp112 1125 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( F  e.  T  /\  D  e.  T  /\  N  e.  T ) )
11 simp13l 1110 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  G  e.  T )
12113ad2ant1 1016 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  G  e.  T )
13 simp13r 1111 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  C  e.  T )
14133ad2ant1 1016 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  C  e.  T )
15 simp2 996 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  x  e.  T )
1612, 14, 153jca 1175 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( G  e.  T  /\  C  e.  T  /\  x  e.  T ) )
17 simp121 1127 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
18 simp122 1128 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( ( R `  F )  =  ( R `  N )  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) ) )
19 simp23l 1116 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  G  =/=  (  _I  |`  B ) )
20193ad2ant1 1016 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  G  =/=  (  _I  |`  B ) )
21 simp23r 1117 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  C  =/=  (  _I  |`  B ) )
22213ad2ant1 1016 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  C  =/=  (  _I  |`  B ) )
23 simp3l 1023 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  x  =/=  (  _I  |`  B ) )
2420, 22, 233jca 1175 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )
25 simp13l 1110 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( ( R `  G )  =/=  ( R `  C
)  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D
)  =/=  ( R `
 F ) ) )
26 simp13r 1111 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( R `  G )  =/=  ( R `  D )
)
27 simp3r3 1105 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( R `  x )  =/=  ( R `  D )
)
28 simp3r1 1103 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( R `  x )  =/=  ( R `  F )
)
29 simp3r2 1104 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( R `  x )  =/=  ( R `  G )
)
3029necomd 2712 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( R `  G )  =/=  ( R `  x )
)
3127, 28, 303jca 1175 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( ( R `  x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) )
32 cdlemk3.l . . . . 5  |-  .<_  =  ( le `  K )
33 cdlemk3.j . . . . 5  |-  .\/  =  ( join `  K )
34 cdlemk3.m . . . . 5  |-  ./\  =  ( meet `  K )
35 cdlemk3.a . . . . 5  |-  A  =  ( Atoms `  K )
36 cdlemk3.s . . . . 5  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
37 cdlemk3.u1 . . . . 5  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
383, 32, 33, 34, 35, 4, 5, 6, 36, 37cdlemk25-3 36332 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T  /\  x  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( R `  G )  =/=  ( R `  D )  /\  (
( R `  x
)  =/=  ( R `
 D )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  x
) ) ) )  ->  ( ( D Y G ) `  P )  =  ( ( C Y G ) `  P ) )
399, 10, 16, 17, 18, 24, 25, 26, 31, 38syl333anc 1259 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( ( D Y G ) `  P )  =  ( ( C Y G ) `  P ) )
4039rexlimdv3a 2935 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  -> 
( E. x  e.  T  ( x  =/=  (  _I  |`  B )  /\  ( ( R `
 x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )  /\  ( R `  x
)  =/=  ( R `
 D ) ) )  ->  ( ( D Y G ) `  P )  =  ( ( C Y G ) `  P ) ) )
418, 40mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  -> 
( ( D Y G ) `  P
)  =  ( ( C Y G ) `
 P ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   E.wrex 2792   class class class wbr 4433    |-> cmpt 4491    _I cid 4776   `'ccnv 4984    |` cres 4987    o. ccom 4989   ` cfv 5574   iota_crio 6237  (class class class)co 6277    |-> cmpt2 6279   Basecbs 14504   lecple 14576   joincjn 15442   meetcmee 15443   Atomscatm 34690   HLchlt 34777   LHypclh 35410   LTrncltrn 35527   trLctrl 35585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-riotaBAD 34386
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6781  df-2nd 6782  df-undef 7000  df-map 7420  df-preset 15426  df-poset 15444  df-plt 15457  df-lub 15473  df-glb 15474  df-join 15475  df-meet 15476  df-p0 15538  df-p1 15539  df-lat 15545  df-clat 15607  df-oposet 34603  df-ol 34605  df-oml 34606  df-covers 34693  df-ats 34694  df-atl 34725  df-cvlat 34749  df-hlat 34778  df-llines 34924  df-lplanes 34925  df-lvols 34926  df-lines 34927  df-psubsp 34929  df-pmap 34930  df-padd 35222  df-lhyp 35414  df-laut 35415  df-ldil 35530  df-ltrn 35531  df-trl 35586
This theorem is referenced by:  cdlemk27-3  36335
  Copyright terms: Public domain W3C validator