Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk24-3 Structured version   Unicode version

Theorem cdlemk24-3 34223
Description: Part of proof of Lemma K of [Crawley] p. 118. Eliminate the  ( R `  x )  =/=  ( R `  C ) requirement from cdlemk23-3 34222 using  ( R `  C )  =  ( R `  D ). (Contributed by NM, 7-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b  |-  B  =  ( Base `  K
)
cdlemk3.l  |-  .<_  =  ( le `  K )
cdlemk3.j  |-  .\/  =  ( join `  K )
cdlemk3.m  |-  ./\  =  ( meet `  K )
cdlemk3.a  |-  A  =  ( Atoms `  K )
cdlemk3.h  |-  H  =  ( LHyp `  K
)
cdlemk3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk3.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk3.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk3.u1  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
Assertion
Ref Expression
cdlemk24-3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T  /\  x  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =  ( R `
 D ) )  /\  ( ( R `
 x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) ) )  ->  (
( D Y G ) `  P )  =  ( ( C Y G ) `  P ) )
Distinct variable groups:    e, d,
f, i,  ./\    .<_ , i    .\/ , d, e, f, i    A, i    j, d, D, e, f, i    f, F, i    G, d, e, j   
i, H    i, K    f, N, i    P, d, e, f, i    R, d, e, f, i    T, d, e, f, i    W, d, e, f, i    ./\ , j    .<_ , j    .\/ , j    A, j    j, F    j, H    j, K    j, N    P, j    R, j    S, d, e, j    T, j    j, W    F, d, e    .<_ , e    C, d, e, f, i, j   
f, G, i    x, d, e, f, i, j
Allowed substitution hints:    A( x, e, f, d)    B( x, e, f, i, j, d)    C( x)    D( x)    P( x)    R( x)    S( x, f, i)    T( x)    F( x)    G( x)    H( x, e, f, d)    .\/ ( x)    K( x, e, f, d)    .<_ ( x, f, d)    ./\ ( x)    N( x, e, d)    W( x)    Y( x, e, f, i, j, d)

Proof of Theorem cdlemk24-3
StepHypRef Expression
1 simp31 1041 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T  /\  x  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =  ( R `
 D ) )  /\  ( ( R `
 x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) ) )  ->  (
( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) ) )
2 simp32l 1130 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T  /\  x  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =  ( R `
 D ) )  /\  ( ( R `
 x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) ) )  ->  ( R `  G )  =/=  ( R `  D
) )
3 simp331 1158 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T  /\  x  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =  ( R `
 D ) )  /\  ( ( R `
 x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) ) )  ->  ( R `  x )  =/=  ( R `  D
) )
4 simp32r 1131 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T  /\  x  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =  ( R `
 D ) )  /\  ( ( R `
 x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) ) )  ->  ( R `  C )  =  ( R `  D ) )
53, 4neeqtrrd 2722 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T  /\  x  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =  ( R `
 D ) )  /\  ( ( R `
 x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) ) )  ->  ( R `  x )  =/=  ( R `  C
) )
62, 5jca 534 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T  /\  x  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =  ( R `
 D ) )  /\  ( ( R `
 x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) ) )  ->  (
( R `  G
)  =/=  ( R `
 D )  /\  ( R `  x )  =/=  ( R `  C ) ) )
7 simp33 1043 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T  /\  x  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =  ( R `
 D ) )  /\  ( ( R `
 x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) ) )  ->  (
( R `  x
)  =/=  ( R `
 D )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  x
) ) )
81, 6, 73jca 1185 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T  /\  x  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =  ( R `
 D ) )  /\  ( ( R `
 x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) ) )  ->  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( ( R `  G )  =/=  ( R `  D )  /\  ( R `  x
)  =/=  ( R `
 C ) )  /\  ( ( R `
 x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) ) )
9 cdlemk3.b . . 3  |-  B  =  ( Base `  K
)
10 cdlemk3.l . . 3  |-  .<_  =  ( le `  K )
11 cdlemk3.j . . 3  |-  .\/  =  ( join `  K )
12 cdlemk3.m . . 3  |-  ./\  =  ( meet `  K )
13 cdlemk3.a . . 3  |-  A  =  ( Atoms `  K )
14 cdlemk3.h . . 3  |-  H  =  ( LHyp `  K
)
15 cdlemk3.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
16 cdlemk3.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
17 cdlemk3.s . . 3  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
18 cdlemk3.u1 . . 3  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
199, 10, 11, 12, 13, 14, 15, 16, 17, 18cdlemk23-3 34222 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T  /\  x  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( ( R `  G )  =/=  ( R `  D )  /\  ( R `  x
)  =/=  ( R `
 C ) )  /\  ( ( R `
 x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) ) )  ->  (
( D Y G ) `  P )  =  ( ( C Y G ) `  P ) )
208, 19syld3an3 1309 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T  /\  x  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =  ( R `
 D ) )  /\  ( ( R `
 x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) ) )  ->  (
( D Y G ) `  P )  =  ( ( C Y G ) `  P ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867    =/= wne 2616   class class class wbr 4417    |-> cmpt 4475    _I cid 4755   `'ccnv 4844    |` cres 4847    o. ccom 4849   ` cfv 5592   iota_crio 6257  (class class class)co 6296    |-> cmpt2 6298   Basecbs 15081   lecple 15157   joincjn 16141   meetcmee 16142   Atomscatm 32582   HLchlt 32669   LHypclh 33302   LTrncltrn 33419   trLctrl 33477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-riotaBAD 32278
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-iin 4296  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6798  df-2nd 6799  df-undef 7019  df-map 7473  df-preset 16125  df-poset 16143  df-plt 16156  df-lub 16172  df-glb 16173  df-join 16174  df-meet 16175  df-p0 16237  df-p1 16238  df-lat 16244  df-clat 16306  df-oposet 32495  df-ol 32497  df-oml 32498  df-covers 32585  df-ats 32586  df-atl 32617  df-cvlat 32641  df-hlat 32670  df-llines 32816  df-lplanes 32817  df-lvols 32818  df-lines 32819  df-psubsp 32821  df-pmap 32822  df-padd 33114  df-lhyp 33306  df-laut 33307  df-ldil 33422  df-ltrn 33423  df-trl 33478
This theorem is referenced by:  cdlemk25-3  34224
  Copyright terms: Public domain W3C validator