Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk21-2N Structured version   Unicode version

Theorem cdlemk21-2N 34167
Description: Part of proof of Lemma K of [Crawley] p. 118. Lines 26-27, p. 119 for i=0 and j=2. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk2.b  |-  B  =  ( Base `  K
)
cdlemk2.l  |-  .<_  =  ( le `  K )
cdlemk2.j  |-  .\/  =  ( join `  K )
cdlemk2.m  |-  ./\  =  ( meet `  K )
cdlemk2.a  |-  A  =  ( Atoms `  K )
cdlemk2.h  |-  H  =  ( LHyp `  K
)
cdlemk2.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk2.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk2.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk2.q  |-  Q  =  ( S `  C
)
cdlemk2.v  |-  V  =  ( d  e.  T  |->  ( iota_ k  e.  T  ( k `  P
)  =  ( ( P  .\/  ( R `
 d ) ) 
./\  ( ( Q `
 P )  .\/  ( R `  ( d  o.  `' C ) ) ) ) ) )
Assertion
Ref Expression
cdlemk21-2N  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( S `
 G ) `  P )  =  ( ( V `  G
) `  P )
)
Distinct variable groups:    f, i,  ./\    .<_ , i    .\/ , f, i    A, i    C, f, i    f, F, i    i, H    i, K    f, N, i    P, f, i    R, f, i    T, f, i    f, W, i    ./\ , d    .\/ , d    C, d, k    G, d, k    Q, d    P, d    R, d    T, d    W, d    ./\ , k    .<_ , k    .\/ , k    A, k    C, k    k, F   
k, H    k, K    k, N    Q, k    P, k    R, k    T, k    k, W    F, d    i, G, f
Allowed substitution hints:    A( f, d)    B( f, i, k, d)    Q( f, i)    S( f, i, k, d)    H( f, d)    K( f, d)    .<_ ( f, d)    N( d)    V( f, i, k, d)

Proof of Theorem cdlemk21-2N
StepHypRef Expression
1 simp11 1035 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  K  e.  HL )
2 simp12 1036 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  W  e.  H
)
31, 2jca 534 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
4 simp2l1 1104 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  e.  T
)
5 simp2l2 1105 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  C  e.  T
)
6 simp2l3 1106 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  N  e.  T
)
7 simp2rl 1074 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  G  e.  T
)
86, 7jca 534 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( N  e.  T  /\  G  e.  T ) )
9 simp33 1043 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
10 simp13 1037 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  F )  =  ( R `  N ) )
11 simp322 1156 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  =/=  (  _I  |`  B ) )
12 simp323 1157 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  C  =/=  (  _I  |`  B ) )
13 simp2rr 1075 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  G  =/=  (  _I  |`  B ) )
1411, 12, 133jca 1185 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) ) )
15 simp31l 1128 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  C )  =/=  ( R `  F )
)
16 simp31r 1129 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  G )  =/=  ( R `  C )
)
17 simp321 1155 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  G )  =/=  ( R `  F )
)
1815, 16, 173jca 1185 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( R `
 C )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  G
)  =/=  ( R `
 F ) ) )
19 cdlemk2.b . . 3  |-  B  =  ( Base `  K
)
20 cdlemk2.l . . 3  |-  .<_  =  ( le `  K )
21 cdlemk2.j . . 3  |-  .\/  =  ( join `  K )
22 cdlemk2.m . . 3  |-  ./\  =  ( meet `  K )
23 cdlemk2.a . . 3  |-  A  =  ( Atoms `  K )
24 cdlemk2.h . . 3  |-  H  =  ( LHyp `  K
)
25 cdlemk2.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
26 cdlemk2.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
27 cdlemk2.s . . 3  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
28 cdlemk2.q . . 3  |-  Q  =  ( S `  C
)
29 cdlemk2.v . . 3  |-  V  =  ( d  e.  T  |->  ( iota_ k  e.  T  ( k `  P
)  =  ( ( P  .\/  ( R `
 d ) ) 
./\  ( ( Q `
 P )  .\/  ( R `  ( d  o.  `' C ) ) ) ) ) )
3019, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29cdlemk21N 34149 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  C  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  C
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( ( S `  G ) `  P
)  =  ( ( V `  G ) `
 P ) )
313, 4, 5, 8, 9, 10, 14, 18, 30syl332anc 1295 1  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C ) )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( S `
 G ) `  P )  =  ( ( V `  G
) `  P )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   class class class wbr 4426    |-> cmpt 4484    _I cid 4764   `'ccnv 4853    |` cres 4856    o. ccom 4858   ` cfv 5601   iota_crio 6266  (class class class)co 6305   Basecbs 15084   lecple 15159   joincjn 16140   meetcmee 16141   Atomscatm 32538   HLchlt 32625   LHypclh 33258   LTrncltrn 33375   trLctrl 33433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-riotaBAD 32234
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-undef 7028  df-map 7482  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-p1 16237  df-lat 16243  df-clat 16305  df-oposet 32451  df-ol 32453  df-oml 32454  df-covers 32541  df-ats 32542  df-atl 32573  df-cvlat 32597  df-hlat 32626  df-llines 32772  df-lplanes 32773  df-lvols 32774  df-lines 32775  df-psubsp 32777  df-pmap 32778  df-padd 33070  df-lhyp 33262  df-laut 33263  df-ldil 33378  df-ltrn 33379  df-trl 33434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator