Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk19y Structured version   Visualization version   Unicode version

Theorem cdlemk19y 34499
Description: cdlemk19 34436 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 30-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
Assertion
Ref Expression
cdlemk19y  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
) ) ) )  ->  [_ F  /  g ]_ Y  =  ( N `  P )
)
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b,  ./\    .\/ , b    F, b    N, b    P, b    R, b    T, b    g, F
Allowed substitution hints:    A( g, b)    B( b)    H( g, b)    K( g, b)    .<_ ( g, b)    N( g)    W( g, b)    Y( g, b)    Z( b)

Proof of Theorem cdlemk19y
Dummy variables  e 
f  i  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemk5.b . 2  |-  B  =  ( Base `  K
)
2 cdlemk5.l . 2  |-  .<_  =  ( le `  K )
3 cdlemk5.j . 2  |-  .\/  =  ( join `  K )
4 cdlemk5.m . 2  |-  ./\  =  ( meet `  K )
5 cdlemk5.a . 2  |-  A  =  ( Atoms `  K )
6 cdlemk5.h . 2  |-  H  =  ( LHyp `  K
)
7 cdlemk5.t . 2  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemk5.r . 2  |-  R  =  ( ( trL `  K
) `  W )
9 cdlemk5.z . 2  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
10 cdlemk5.y . 2  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
11 eqid 2451 . 2  |-  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `
 P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) ) ) )  =  ( f  e.  T  |->  (
iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
12 eqid 2451 . 2  |-  ( e  e.  T  |->  ( iota_ j  e.  T  ( j `
 P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( (
( ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P )  =  ( ( P  .\/  ( R `  f )
)  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) ) ) ) `  b
) `  P )  .\/  ( R `  (
e  o.  `' b ) ) ) ) ) )  =  ( e  e.  T  |->  (
iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) ) `  b ) `
 P )  .\/  ( R `  ( e  o.  `' b ) ) ) ) ) )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemk19ylem 34497 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
) ) ) )  ->  [_ F  /  g ]_ Y  =  ( N `  P )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   [_csb 3363   class class class wbr 4402    |-> cmpt 4461    _I cid 4744   `'ccnv 4833    |` cres 4836    o. ccom 4838   ` cfv 5582   iota_crio 6251  (class class class)co 6290   Basecbs 15121   lecple 15197   joincjn 16189   meetcmee 16190   Atomscatm 32829   HLchlt 32916   LHypclh 33549   LTrncltrn 33666   trLctrl 33724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-riotaBAD 32525
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-1st 6793  df-2nd 6794  df-undef 7020  df-map 7474  df-preset 16173  df-poset 16191  df-plt 16204  df-lub 16220  df-glb 16221  df-join 16222  df-meet 16223  df-p0 16285  df-p1 16286  df-lat 16292  df-clat 16354  df-oposet 32742  df-ol 32744  df-oml 32745  df-covers 32832  df-ats 32833  df-atl 32864  df-cvlat 32888  df-hlat 32917  df-llines 33063  df-lplanes 33064  df-lvols 33065  df-lines 33066  df-psubsp 33068  df-pmap 33069  df-padd 33361  df-lhyp 33553  df-laut 33554  df-ldil 33669  df-ltrn 33670  df-trl 33725
This theorem is referenced by:  cdlemk19xlem  34509
  Copyright terms: Public domain W3C validator