Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk19u Unicode version

Theorem cdlemk19u 31452
Description: Part of Lemma K of [Crawley] p. 118. Line 12, p. 120, "f (exponent) tau = k". We represent f, k, tau with  F,  N,  U. (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
cdlemk5.u  |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X ) )
Assertion
Ref Expression
cdlemk19u  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( U `  F
)  =  N )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b, z,  ./\    .<_ , b   
z, g,  .<_    .\/ , b,
z    A, b, g, z    B, b, z    F, b, g, z    H, b, g, z    K, b, g, z    N, b, g, z    P, b, z    R, b, z    T, b, z    W, b, g, z    z, Y
Allowed substitution hints:    U( z, g, b)    X( z, g, b)    Y( g, b)    Z( z, b)

Proof of Theorem cdlemk19u
StepHypRef Expression
1 simp1l 981 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp1 957 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) ) )
3 simp2l 983 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
4 simp2r 984 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  N  e.  T )
5 simp3 959 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
6 cdlemk5.b . . . 4  |-  B  =  ( Base `  K
)
7 cdlemk5.l . . . 4  |-  .<_  =  ( le `  K )
8 cdlemk5.j . . . 4  |-  .\/  =  ( join `  K )
9 cdlemk5.m . . . 4  |-  ./\  =  ( meet `  K )
10 cdlemk5.a . . . 4  |-  A  =  ( Atoms `  K )
11 cdlemk5.h . . . 4  |-  H  =  ( LHyp `  K
)
12 cdlemk5.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
13 cdlemk5.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
14 cdlemk5.z . . . 4  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
15 cdlemk5.y . . . 4  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
16 cdlemk5.x . . . 4  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
17 cdlemk5.u . . . 4  |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X ) )
186, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17cdlemk35u 31446 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T  /\  F  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( U `  F
)  e.  T )
192, 3, 4, 3, 5, 18syl131anc 1197 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( U `  F
)  e.  T )
20 simpr 448 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  =  N )  ->  F  =  N )
21 simpl2l 1010 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  =  N )  ->  F  e.  T )
2216, 17cdlemk40t 31400 . . . . . 6  |-  ( ( F  =  N  /\  F  e.  T )  ->  ( U `  F
)  =  F )
2320, 21, 22syl2anc 643 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  =  N )  ->  ( U `  F
)  =  F )
2423fveq1d 5689 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  =  N )  ->  ( ( U `  F ) `  P
)  =  ( F `
 P ) )
25 fveq1 5686 . . . . 5  |-  ( F  =  N  ->  ( F `  P )  =  ( N `  P ) )
2625adantl 453 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  =  N )  ->  ( F `  P
)  =  ( N `
 P ) )
2724, 26eqtrd 2436 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  =  N )  ->  ( ( U `  F ) `  P
)  =  ( N `
 P ) )
28 simpl1 960 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  =/=  N )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) ) )
29 simpl2l 1010 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  =/=  N )  ->  F  e.  T )
30 simpr 448 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  =/=  N )  ->  F  =/=  N )
31 simpl2r 1011 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  =/=  N )  ->  N  e.  T )
32 simpl3 962 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  =/=  N )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
336, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17cdlemk19u1 31451 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  F  =/=  N  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( ( U `  F ) `  P
)  =  ( N `
 P ) )
3428, 29, 30, 31, 32, 33syl131anc 1197 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  =/=  N )  -> 
( ( U `  F ) `  P
)  =  ( N `
 P ) )
3527, 34pm2.61dane 2645 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( ( U `  F ) `  P
)  =  ( N `
 P ) )
367, 10, 11, 12cdlemd 30689 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  F )  e.  T  /\  N  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( U `
 F ) `  P )  =  ( N `  P ) )  ->  ( U `  F )  =  N )
371, 19, 4, 5, 35, 36syl311anc 1198 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  N  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( U `  F
)  =  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   ifcif 3699   class class class wbr 4172    e. cmpt 4226    _I cid 4453   `'ccnv 4836    |` cres 4839    o. ccom 4841   ` cfv 5413  (class class class)co 6040   iota_crio 6501   Basecbs 13424   lecple 13491   joincjn 14356   meetcmee 14357   Atomscatm 29746   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   trLctrl 30640
This theorem is referenced by:  cdlemk19w  31454
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-map 6979  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641
  Copyright terms: Public domain W3C validator