Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk18-3N Structured version   Unicode version

Theorem cdlemk18-3N 37078
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 22 on p. 119.  N,  Y,  O,  D are k, sigma2 (p), k1, f1. (Contributed by NM, 7-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk3.b  |-  B  =  ( Base `  K
)
cdlemk3.l  |-  .<_  =  ( le `  K )
cdlemk3.j  |-  .\/  =  ( join `  K )
cdlemk3.m  |-  ./\  =  ( meet `  K )
cdlemk3.a  |-  A  =  ( Atoms `  K )
cdlemk3.h  |-  H  =  ( LHyp `  K
)
cdlemk3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk3.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk3.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk3.u1  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
Assertion
Ref Expression
cdlemk18-3N  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( D Y F ) `  P )  =  ( N `  P ) )
Distinct variable groups:    e, d,
f, i,  ./\    .<_ , i    .\/ , d, e, f, i    A, i    j, d, D, e, f, i    f, F, i    i, H    i, K    f, N, i    P, d, e, f, i    R, d, e, f, i    T, d, e, f, i    W, d, e, f, i    ./\ , j    .<_ , j    .\/ , j    A, j    j, F    j, H    j, K    j, N    P, j    R, j    S, d, e, j    T, j    j, W    F, d, e
Allowed substitution hints:    A( e, f, d)    B( e, f, i, j, d)    S( f, i)    H( e, f, d)    K( e, f, d)    .<_ ( e, f, d)    N( e, d)    Y( e, f, i, j, d)

Proof of Theorem cdlemk18-3N
StepHypRef Expression
1 simp22 1028 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  D  e.  T
)
2 simp21 1027 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  e.  T
)
3 cdlemk3.b . . . . 5  |-  B  =  ( Base `  K
)
4 cdlemk3.l . . . . 5  |-  .<_  =  ( le `  K )
5 cdlemk3.j . . . . 5  |-  .\/  =  ( join `  K )
6 cdlemk3.m . . . . 5  |-  ./\  =  ( meet `  K )
7 cdlemk3.a . . . . 5  |-  A  =  ( Atoms `  K )
8 cdlemk3.h . . . . 5  |-  H  =  ( LHyp `  K
)
9 cdlemk3.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
10 cdlemk3.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
11 cdlemk3.s . . . . 5  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
12 cdlemk3.u1 . . . . 5  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
13 eqid 2396 . . . . 5  |-  ( S `
 D )  =  ( S `  D
)
14 eqid 2396 . . . . 5  |-  ( e  e.  T  |->  ( iota_ j  e.  T  ( j `
 P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( (
( S `  D
) `  P )  .\/  ( R `  (
e  o.  `' D
) ) ) ) ) )  =  ( e  e.  T  |->  (
iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )
153, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdlemkuu 37073 . . . 4  |-  ( ( D  e.  T  /\  F  e.  T )  ->  ( D Y F )  =  ( ( e  e.  T  |->  (
iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) ) `  F ) )
161, 2, 15syl2anc 659 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( D Y F )  =  ( ( e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) ) `  F ) )
1716fveq1d 5793 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( D Y F ) `  P )  =  ( ( ( e  e.  T  |->  ( iota_ j  e.  T  ( j `  P )  =  ( ( P  .\/  ( R `  e )
)  ./\  ( (
( S `  D
) `  P )  .\/  ( R `  (
e  o.  `' D
) ) ) ) ) ) `  F
) `  P )
)
183, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14cdlemk18-2N 37064 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( N `  P )  =  ( ( ( e  e.  T  |->  ( iota_ j  e.  T  ( j `  P )  =  ( ( P  .\/  ( R `  e )
)  ./\  ( (
( S `  D
) `  P )  .\/  ( R `  (
e  o.  `' D
) ) ) ) ) ) `  F
) `  P )
)
1917, 18eqtr4d 2440 1  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( D Y F ) `  P )  =  ( N `  P ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836    =/= wne 2591   class class class wbr 4384    |-> cmpt 4442    _I cid 4721   `'ccnv 4929    |` cres 4932    o. ccom 4934   ` cfv 5513   iota_crio 6179  (class class class)co 6218    |-> cmpt2 6220   Basecbs 14657   lecple 14732   joincjn 15713   meetcmee 15714   Atomscatm 35440   HLchlt 35527   LHypclh 36160   LTrncltrn 36277   trLctrl 36335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-rep 4495  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513  ax-riotaBAD 35136
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-nel 2594  df-ral 2751  df-rex 2752  df-reu 2753  df-rmo 2754  df-rab 2755  df-v 3053  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4181  df-iun 4262  df-iin 4263  df-br 4385  df-opab 4443  df-mpt 4444  df-id 4726  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6180  df-ov 6221  df-oprab 6222  df-mpt2 6223  df-1st 6721  df-2nd 6722  df-undef 6942  df-map 7362  df-preset 15697  df-poset 15715  df-plt 15728  df-lub 15744  df-glb 15745  df-join 15746  df-meet 15747  df-p0 15809  df-p1 15810  df-lat 15816  df-clat 15878  df-oposet 35353  df-ol 35355  df-oml 35356  df-covers 35443  df-ats 35444  df-atl 35475  df-cvlat 35499  df-hlat 35528  df-llines 35674  df-lplanes 35675  df-lvols 35676  df-lines 35677  df-psubsp 35679  df-pmap 35680  df-padd 35972  df-lhyp 36164  df-laut 36165  df-ldil 36280  df-ltrn 36281  df-trl 36336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator