Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk14-2N Structured version   Unicode version

Theorem cdlemk14-2N 36479
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 19 on p. 119.  Q,  C are k2, f2. (Contributed by NM, 1-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk2.b  |-  B  =  ( Base `  K
)
cdlemk2.l  |-  .<_  =  ( le `  K )
cdlemk2.j  |-  .\/  =  ( join `  K )
cdlemk2.m  |-  ./\  =  ( meet `  K )
cdlemk2.a  |-  A  =  ( Atoms `  K )
cdlemk2.h  |-  H  =  ( LHyp `  K
)
cdlemk2.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk2.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk2.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk2.q  |-  Q  =  ( S `  C
)
Assertion
Ref Expression
cdlemk14-2N  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T
)  /\  ( ( R `  C )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( N `  P )  .<_  ( ( Q `  P ) 
.\/  ( R `  ( F  o.  `' C ) ) ) )
Distinct variable groups:    f, i,  ./\    .<_ , i    .\/ , f, i    A, i    C, f, i    f, F, i    i, H    i, K    f, N, i    P, f, i    R, f, i    T, f, i    f, W, i
Allowed substitution hints:    A( f)    B( f, i)    Q( f, i)    S( f, i)    H( f)    K( f)    .<_ ( f)

Proof of Theorem cdlemk14-2N
StepHypRef Expression
1 simp11 1027 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T
)  /\  ( ( R `  C )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  K  e.  HL )
2 simp12 1028 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T
)  /\  ( ( R `  C )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  W  e.  H
)
31, 2jca 532 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T
)  /\  ( ( R `  C )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
4 simp21 1030 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T
)  /\  ( ( R `  C )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  e.  T
)
5 simp22 1031 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T
)  /\  ( ( R `  C )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  C  e.  T
)
6 simp23 1032 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T
)  /\  ( ( R `  C )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  N  e.  T
)
7 simp33 1035 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T
)  /\  ( ( R `  C )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
8 simp13 1029 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T
)  /\  ( ( R `  C )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  F )  =  ( R `  N ) )
9 simp32l 1122 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T
)  /\  ( ( R `  C )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  =/=  (  _I  |`  B ) )
10 simp32r 1123 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T
)  /\  ( ( R `  C )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  C  =/=  (  _I  |`  B ) )
11 simp31 1033 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T
)  /\  ( ( R `  C )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  C )  =/=  ( R `  F )
)
12 cdlemk2.b . . 3  |-  B  =  ( Base `  K
)
13 cdlemk2.l . . 3  |-  .<_  =  ( le `  K )
14 cdlemk2.j . . 3  |-  .\/  =  ( join `  K )
15 cdlemk2.m . . 3  |-  ./\  =  ( meet `  K )
16 cdlemk2.a . . 3  |-  A  =  ( Atoms `  K )
17 cdlemk2.h . . 3  |-  H  =  ( LHyp `  K
)
18 cdlemk2.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
19 cdlemk2.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
20 cdlemk2.s . . 3  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
21 cdlemk2.q . . 3  |-  Q  =  ( S `  C
)
2212, 13, 14, 15, 16, 17, 18, 19, 20, 21cdlemk14 36455 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  C  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  ( R `  C )  =/=  ( R `  F ) ) )  ->  ( N `  P )  .<_  ( ( Q `  P ) 
.\/  ( R `  ( F  o.  `' C ) ) ) )
233, 4, 5, 6, 7, 8, 9, 10, 11, 22syl333anc 1261 1  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  C  e.  T  /\  N  e.  T
)  /\  ( ( R `  C )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( N `  P )  .<_  ( ( Q `  P ) 
.\/  ( R `  ( F  o.  `' C ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   class class class wbr 4437    |-> cmpt 4495    _I cid 4780   `'ccnv 4988    |` cres 4991    o. ccom 4993   ` cfv 5578   iota_crio 6241  (class class class)co 6281   Basecbs 14614   lecple 14686   joincjn 15552   meetcmee 15553   Atomscatm 34863   HLchlt 34950   LHypclh 35583   LTrncltrn 35700   trLctrl 35758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-riotaBAD 34559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-1st 6785  df-2nd 6786  df-undef 7004  df-map 7424  df-preset 15536  df-poset 15554  df-plt 15567  df-lub 15583  df-glb 15584  df-join 15585  df-meet 15586  df-p0 15648  df-p1 15649  df-lat 15655  df-clat 15717  df-oposet 34776  df-ol 34778  df-oml 34779  df-covers 34866  df-ats 34867  df-atl 34898  df-cvlat 34922  df-hlat 34951  df-llines 35097  df-lplanes 35098  df-lvols 35099  df-lines 35100  df-psubsp 35102  df-pmap 35103  df-padd 35395  df-lhyp 35587  df-laut 35588  df-ldil 35703  df-ltrn 35704  df-trl 35759
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator