Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk11u Structured version   Visualization version   Unicode version

Theorem cdlemk11u 34438
 Description: Part of proof of Lemma K of [Crawley] p. 118. Line 17, p. 119, showing Eq. 3 (line 8, p. 119) for the sigma1 () case. (Contributed by NM, 4-Jul-2013.)
Hypotheses
Ref Expression
cdlemk1.b
cdlemk1.l
cdlemk1.j
cdlemk1.m
cdlemk1.a
cdlemk1.h
cdlemk1.t
cdlemk1.r
cdlemk1.s
cdlemk1.o
cdlemk1.u
cdlemk1.v
Assertion
Ref Expression
cdlemk11u
Distinct variable groups:   ,,   ,   ,,   ,   ,,   ,,   ,   ,   ,,   ,,   ,,   ,,   ,,   ,   ,   ,,   ,,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,,
Allowed substitution hints:   (,)   (,,,)   (,,,)   (,,,)   (,)   (,)   (,)   (,)   ()   (,)   (,,,)   (,)

Proof of Theorem cdlemk11u
StepHypRef Expression
1 cdlemk1.b . 2
2 cdlemk1.l . 2
3 simp11l 1119 . . 3
4 hllat 32929 . . 3
53, 4syl 17 . 2
6 simp11r 1120 . . . . 5
73, 6jca 535 . . . 4
8 simp23 1043 . . . 4
9 simp212 1147 . . . 4
10 simp12 1039 . . . 4
11 simp13 1040 . . . 4
12 simp211 1146 . . . 4
13 simp331 1161 . . . . 5
14 simp332 1162 . . . . . 6
1514necomd 2679 . . . . 5
1613, 15jca 535 . . . 4
17 simp311 1155 . . . . 5
18 simp313 1157 . . . . 5
19 simp312 1156 . . . . 5
2017, 18, 193jca 1188 . . . 4
21 simp22 1042 . . . 4
22 cdlemk1.j . . . . 5
23 cdlemk1.m . . . . 5
24 cdlemk1.a . . . . 5
25 cdlemk1.h . . . . 5
26 cdlemk1.t . . . . 5
27 cdlemk1.r . . . . 5
28 cdlemk1.s . . . . 5
29 cdlemk1.o . . . . 5
30 cdlemk1.u . . . . 5
311, 2, 22, 23, 24, 25, 26, 27, 28, 29, 30cdlemkuat 34433 . . . 4
327, 8, 9, 10, 11, 12, 16, 20, 21, 31syl333anc 1300 . . 3
331, 24atbase 32855 . . 3
3432, 33syl 17 . 2
35 simp213 1148 . . . . 5
36 simp333 1163 . . . . . . 7
3736necomd 2679 . . . . . 6
3813, 37jca 535 . . . . 5
39 simp32 1045 . . . . . 6
4017, 39, 193jca 1188 . . . . 5
411, 2, 22, 23, 24, 25, 26, 27, 28, 29, 30cdlemkuat 34433 . . . . 5
427, 8, 35, 10, 11, 12, 38, 40, 21, 41syl333anc 1300 . . . 4
431, 24atbase 32855 . . . 4
4442, 43syl 17 . . 3
45 simp22l 1127 . . . 4
46 cdlemk1.v . . . . 5
471, 2, 22, 24, 25, 26, 27, 23, 46cdlemkvcl 34409 . . . 4
483, 6, 11, 9, 35, 45, 47syl231anc 1288 . . 3
491, 22latjcl 16297 . . 3
505, 44, 48, 49syl3anc 1268 . 2
5125, 26ltrncnv 33711 . . . . . 6
527, 9, 51syl2anc 667 . . . . 5
5325, 26ltrnco 34286 . . . . 5
547, 35, 52, 53syl3anc 1268 . . . 4
551, 25, 26, 27trlcl 33730 . . . 4
567, 54, 55syl2anc 667 . . 3
571, 22latjcl 16297 . . 3
585, 44, 56, 57syl3anc 1268 . 2
591, 2, 22, 23, 24, 25, 26, 27, 28, 29, 30, 46cdlemk7u 34437 . 2
601, 2, 22, 24, 25, 26, 27, 23, 46cdlemk10 34410 . . . 4
613, 6, 11, 9, 35, 21, 60syl231anc 1288 . . 3
621, 2, 22latjlej2 16312 . . . 4
635, 48, 56, 44, 62syl13anc 1270 . . 3
6461, 63mpd 15 . 2
651, 2, 5, 34, 50, 58, 59, 64lattrd 16304 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wa 371   w3a 985   wceq 1444   wcel 1887   wne 2622   class class class wbr 4402   cmpt 4461   cid 4744  ccnv 4833   cres 4836   ccom 4838  cfv 5582  crio 6251  (class class class)co 6290  cbs 15121  cple 15197  cjn 16189  cmee 16190  clat 16291  catm 32829  chlt 32916  clh 33549  cltrn 33666  ctrl 33724 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-riotaBAD 32525 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-1st 6793  df-2nd 6794  df-undef 7020  df-map 7474  df-preset 16173  df-poset 16191  df-plt 16204  df-lub 16220  df-glb 16221  df-join 16222  df-meet 16223  df-p0 16285  df-p1 16286  df-lat 16292  df-clat 16354  df-oposet 32742  df-ol 32744  df-oml 32745  df-covers 32832  df-ats 32833  df-atl 32864  df-cvlat 32888  df-hlat 32917  df-llines 33063  df-lplanes 33064  df-lvols 33065  df-lines 33066  df-psubsp 33068  df-pmap 33069  df-padd 33361  df-lhyp 33553  df-laut 33554  df-ldil 33669  df-ltrn 33670  df-trl 33725 This theorem is referenced by:  cdlemk12u  34439  cdlemk11u-2N  34456  cdlemk11ta  34496
 Copyright terms: Public domain W3C validator