Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk11u-2N Structured version   Visualization version   Unicode version

Theorem cdlemk11u-2N 34457
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 17, p. 119, showing Eq. 3 (line 8, p. 119) for the sigma2 ( Z) case. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk2.b  |-  B  =  ( Base `  K
)
cdlemk2.l  |-  .<_  =  ( le `  K )
cdlemk2.j  |-  .\/  =  ( join `  K )
cdlemk2.m  |-  ./\  =  ( meet `  K )
cdlemk2.a  |-  A  =  ( Atoms `  K )
cdlemk2.h  |-  H  =  ( LHyp `  K
)
cdlemk2.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk2.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk2.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk2.q  |-  Q  =  ( S `  C
)
cdlemk2.v  |-  V  =  ( d  e.  T  |->  ( iota_ k  e.  T  ( k `  P
)  =  ( ( P  .\/  ( R `
 d ) ) 
./\  ( ( Q `
 P )  .\/  ( R `  ( d  o.  `' C ) ) ) ) ) )
cdlemk2.z  |-  Z  =  ( ( ( G `
 P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' C ) )  .\/  ( R `  ( X  o.  `' C ) ) ) )
Assertion
Ref Expression
cdlemk11u-2N  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( V `  G ) `  P )  .<_  ( ( ( V `  X
) `  P )  .\/  ( R `  ( X  o.  `' G
) ) ) )
Distinct variable groups:    f, i,  ./\    .<_ , i    .\/ , f, i    A, i    C, f, i    f, F, i    i, H    i, K    f, N, i    P, f, i    R, f, i    T, f, i    f, W, i    ./\ , d    .\/ , d    C, d, k    G, d, k    Q, d    P, d    R, d    T, d    W, d    ./\ , k    .<_ , k    .\/ , k    A, k    C, k    k, F   
k, H    k, K    k, N    Q, k    P, k    R, k    T, k    k, W    F, d    X, d, k
Allowed substitution hints:    A( f, d)    B( f, i, k, d)    Q( f, i)    S( f, i, k, d)    G( f, i)    H( f, d)    K( f, d)    .<_ ( f, d)    N( d)    V( f, i, k, d)    X( f, i)    Z( f, i, k, d)

Proof of Theorem cdlemk11u-2N
StepHypRef Expression
1 simp11 1039 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  K  e.  HL )
2 simp12 1040 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  W  e.  H )
31, 2jca 539 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
4 simp211 1147 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  e.  T )
5 simp212 1148 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  C  e.  T )
6 simp213 1149 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  N  e.  T )
7 simp22l 1128 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  G  e.  T )
8 simp23l 1130 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  X  e.  T )
96, 7, 83jca 1189 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( N  e.  T  /\  G  e.  T  /\  X  e.  T ) )
10 simp33 1047 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
11 simp13 1041 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  F )  =  ( R `  N ) )
12 simp32l 1134 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  =/=  (  _I  |`  B ) )
13 simp32r 1135 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  C  =/=  (  _I  |`  B ) )
14 simp22r 1129 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  G  =/=  (  _I  |`  B ) )
1512, 13, 143jca 1189 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) ) )
16 simp23r 1131 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  X  =/=  (  _I  |`  B ) )
17 simp31 1045 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( R `  C )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  X
)  =/=  ( R `
 C ) ) )
18 cdlemk2.b . . 3  |-  B  =  ( Base `  K
)
19 cdlemk2.l . . 3  |-  .<_  =  ( le `  K )
20 cdlemk2.j . . 3  |-  .\/  =  ( join `  K )
21 cdlemk2.m . . 3  |-  ./\  =  ( meet `  K )
22 cdlemk2.a . . 3  |-  A  =  ( Atoms `  K )
23 cdlemk2.h . . 3  |-  H  =  ( LHyp `  K
)
24 cdlemk2.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
25 cdlemk2.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
26 cdlemk2.s . . 3  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
27 cdlemk2.q . . 3  |-  Q  =  ( S `  C
)
28 cdlemk2.v . . 3  |-  V  =  ( d  e.  T  |->  ( iota_ k  e.  T  ( k `  P
)  =  ( ( P  .\/  ( R `
 d ) ) 
./\  ( ( Q `
 P )  .\/  ( R `  ( d  o.  `' C ) ) ) ) ) )
29 cdlemk2.z . . 3  |-  Z  =  ( ( ( G `
 P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' C ) )  .\/  ( R `  ( X  o.  `' C ) ) ) )
3018, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29cdlemk11u 34439 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  C  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 C )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  X
)  =/=  ( R `
 C ) ) ) )  ->  (
( V `  G
) `  P )  .<_  ( ( ( V `
 X ) `  P )  .\/  ( R `  ( X  o.  `' G ) ) ) )
313, 4, 5, 9, 10, 11, 15, 16, 17, 30syl333anc 1303 1  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( V `  G ) `  P )  .<_  ( ( ( V `  X
) `  P )  .\/  ( R `  ( X  o.  `' G
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 375    /\ w3a 986    = wceq 1447    e. wcel 1890    =/= wne 2621   class class class wbr 4373    |-> cmpt 4432    _I cid 4721   `'ccnv 4810    |` cres 4813    o. ccom 4815   ` cfv 5560   iota_crio 6236  (class class class)co 6275   Basecbs 15131   lecple 15207   joincjn 16199   meetcmee 16200   Atomscatm 32830   HLchlt 32917   LHypclh 33550   LTrncltrn 33667   trLctrl 33725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1672  ax-4 1685  ax-5 1761  ax-6 1808  ax-7 1854  ax-8 1892  ax-9 1899  ax-10 1918  ax-11 1923  ax-12 1936  ax-13 2091  ax-ext 2431  ax-rep 4486  ax-sep 4496  ax-nul 4505  ax-pow 4553  ax-pr 4611  ax-un 6570  ax-riotaBAD 32526
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 987  df-3an 988  df-tru 1450  df-ex 1667  df-nf 1671  df-sb 1801  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3014  df-sbc 3235  df-csb 3331  df-dif 3374  df-un 3376  df-in 3378  df-ss 3385  df-nul 3699  df-if 3849  df-pw 3920  df-sn 3936  df-pr 3938  df-op 3942  df-uni 4168  df-iun 4249  df-iin 4250  df-br 4374  df-opab 4433  df-mpt 4434  df-id 4726  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5524  df-fun 5562  df-fn 5563  df-f 5564  df-f1 5565  df-fo 5566  df-f1o 5567  df-fv 5568  df-riota 6237  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6780  df-2nd 6781  df-undef 7006  df-map 7460  df-preset 16183  df-poset 16201  df-plt 16214  df-lub 16230  df-glb 16231  df-join 16232  df-meet 16233  df-p0 16295  df-p1 16296  df-lat 16302  df-clat 16364  df-oposet 32743  df-ol 32745  df-oml 32746  df-covers 32833  df-ats 32834  df-atl 32865  df-cvlat 32889  df-hlat 32918  df-llines 33064  df-lplanes 33065  df-lvols 33066  df-lines 33067  df-psubsp 33069  df-pmap 33070  df-padd 33362  df-lhyp 33554  df-laut 33555  df-ldil 33670  df-ltrn 33671  df-trl 33726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator