Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk11 Unicode version

Theorem cdlemk11 29727
Description: Part of proof of Lemma K of [Crawley] p. 118. Eq. 3, line 8, p. 119. (Contributed by NM, 29-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
cdlemk.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk.v  |-  V  =  ( ( ( G `
 P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )
Assertion
Ref Expression
cdlemk11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  G
) `  P )  .<_  ( ( ( S `
 X ) `  P )  .\/  ( R `  ( X  o.  `' G ) ) ) )
Distinct variable groups:    ./\ , f    .\/ , f    f, F, i    f, G, i    f, N    P, f    R, f    T, f   
f, W    ./\ , i    .<_ , i    .\/ , i    A, i    i, F   
i, H    i, K    i, N    P, i    R, i    T, i    i, W    f, X, i
Allowed substitution hints:    A( f)    B( f, i)    S( f, i)    H( f)    K( f)    .<_ ( f)    V( f, i)

Proof of Theorem cdlemk11
StepHypRef Expression
1 cdlemk.b . 2  |-  B  =  ( Base `  K
)
2 cdlemk.l . 2  |-  .<_  =  ( le `  K )
3 simp11l 1071 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  K  e.  HL )
4 hllat 28242 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 17 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  K  e.  Lat )
6 simp1 960 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
) )
7 simp21l 1077 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  N  e.  T )
8 simp22 994 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
9 simp23 995 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( R `  F )  =  ( R `  N ) )
10 simp311 1107 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  F  =/=  (  _I  |`  B ) )
11 simp312 1108 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  G  =/=  (  _I  |`  B ) )
12 simp32 997 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( R `  G )  =/=  ( R `  F
) )
13 cdlemk.j . . . . 5  |-  .\/  =  ( join `  K )
14 cdlemk.a . . . . 5  |-  A  =  ( Atoms `  K )
15 cdlemk.h . . . . 5  |-  H  =  ( LHyp `  K
)
16 cdlemk.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
17 cdlemk.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
18 cdlemk.m . . . . 5  |-  ./\  =  ( meet `  K )
19 cdlemk.s . . . . 5  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
201, 2, 13, 14, 15, 16, 17, 18, 19cdlemksat 29724 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( ( S `
 G ) `  P )  e.  A
)
216, 7, 8, 9, 10, 11, 12, 20syl133anc 1210 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  G
) `  P )  e.  A )
221, 14atbase 28168 . . 3  |-  ( ( ( S `  G
) `  P )  e.  A  ->  ( ( S `  G ) `
 P )  e.  B )
2321, 22syl 17 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  G
) `  P )  e.  B )
24 simp11 990 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
25 simp12 991 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  F  e.  T )
26 simp21r 1078 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  X  e.  T )
27 simp313 1109 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  X  =/=  (  _I  |`  B ) )
28 simp33 998 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( R `  X )  =/=  ( R `  F
) )
291, 2, 13, 14, 15, 16, 17, 18, 19cdlemksat 29724 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  X  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B )  /\  ( R `  X )  =/=  ( R `  F ) ) )  ->  ( ( S `
 X ) `  P )  e.  A
)
3024, 25, 26, 7, 8, 9, 10, 27, 28, 29syl333anc 1219 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  X
) `  P )  e.  A )
311, 14atbase 28168 . . . 4  |-  ( ( ( S `  X
) `  P )  e.  A  ->  ( ( S `  X ) `
 P )  e.  B )
3230, 31syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  X
) `  P )  e.  B )
33 simp11r 1072 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  W  e.  H )
34 simp13 992 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  G  e.  T )
35 simp22l 1079 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  P  e.  A )
36 cdlemk.v . . . . 5  |-  V  =  ( ( ( G `
 P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )
371, 2, 13, 14, 15, 16, 17, 18, 36cdlemkvcl 29720 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  P  e.  A )  ->  V  e.  B )
383, 33, 25, 34, 26, 35, 37syl231anc 1207 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  V  e.  B )
391, 13latjcl 14000 . . 3  |-  ( ( K  e.  Lat  /\  ( ( S `  X ) `  P
)  e.  B  /\  V  e.  B )  ->  ( ( ( S `
 X ) `  P )  .\/  V
)  e.  B )
405, 32, 38, 39syl3anc 1187 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( ( S `  X ) `  P
)  .\/  V )  e.  B )
4115, 16ltrncnv 29024 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  `' G  e.  T )
4224, 34, 41syl2anc 645 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  `' G  e.  T )
4315, 16ltrnco 29597 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  `' G  e.  T
)  ->  ( X  o.  `' G )  e.  T
)
4424, 26, 42, 43syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( X  o.  `' G
)  e.  T )
451, 15, 16, 17trlcl 29042 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  o.  `' G )  e.  T
)  ->  ( R `  ( X  o.  `' G ) )  e.  B )
4624, 44, 45syl2anc 645 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( R `  ( X  o.  `' G ) )  e.  B )
471, 13latjcl 14000 . . 3  |-  ( ( K  e.  Lat  /\  ( ( S `  X ) `  P
)  e.  B  /\  ( R `  ( X  o.  `' G ) )  e.  B )  ->  ( ( ( S `  X ) `
 P )  .\/  ( R `  ( X  o.  `' G ) ) )  e.  B
)
485, 32, 46, 47syl3anc 1187 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( ( S `  X ) `  P
)  .\/  ( R `  ( X  o.  `' G ) ) )  e.  B )
491, 2, 13, 14, 15, 16, 17, 18, 19, 36cdlemk7 29726 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  G
) `  P )  .<_  ( ( ( S `
 X ) `  P )  .\/  V
) )
501, 2, 13, 14, 15, 16, 17, 18, 36cdlemk10 29721 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  V  .<_  ( R `  ( X  o.  `' G ) ) )
513, 33, 25, 34, 26, 8, 50syl231anc 1207 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  V  .<_  ( R `  ( X  o.  `' G
) ) )
521, 2, 13latjlej2 14016 . . . 4  |-  ( ( K  e.  Lat  /\  ( V  e.  B  /\  ( R `  ( X  o.  `' G
) )  e.  B  /\  ( ( S `  X ) `  P
)  e.  B ) )  ->  ( V  .<_  ( R `  ( X  o.  `' G
) )  ->  (
( ( S `  X ) `  P
)  .\/  V )  .<_  ( ( ( S `
 X ) `  P )  .\/  ( R `  ( X  o.  `' G ) ) ) ) )
535, 38, 46, 32, 52syl13anc 1189 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( V  .<_  ( R `  ( X  o.  `' G ) )  -> 
( ( ( S `
 X ) `  P )  .\/  V
)  .<_  ( ( ( S `  X ) `
 P )  .\/  ( R `  ( X  o.  `' G ) ) ) ) )
5451, 53mpd 16 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( ( S `  X ) `  P
)  .\/  V )  .<_  ( ( ( S `
 X ) `  P )  .\/  ( R `  ( X  o.  `' G ) ) ) )
551, 2, 5, 23, 40, 48, 49, 54lattrd 14008 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  G
) `  P )  .<_  ( ( ( S `
 X ) `  P )  .\/  ( R `  ( X  o.  `' G ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920    e. cmpt 3974    _I cid 4197   `'ccnv 4579    |` cres 4582    o. ccom 4584   ` cfv 4592  (class class class)co 5710   iota_crio 6181   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Latclat 13995   Atomscatm 28142   HLchlt 28229   LHypclh 28862   LTrncltrn 28979   trLctrl 29036
This theorem is referenced by:  cdlemk12  29728
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-llines 28376  df-lplanes 28377  df-lvols 28378  df-lines 28379  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866  df-laut 28867  df-ldil 28982  df-ltrn 28983  df-trl 29037
  Copyright terms: Public domain W3C validator