Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk1 Structured version   Unicode version

Theorem cdlemk1 34315
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 22-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemk1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  (
( R `  F
)  =  ( R `
 N )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  .\/  ( N `  P ) )  =  ( ( F `  P )  .\/  ( R `  F )
) )

Proof of Theorem cdlemk1
StepHypRef Expression
1 simp3l 1016 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  (
( R `  F
)  =  ( R `
 N )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  F )  =  ( R `  N ) )
21oveq2d 6102 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  (
( R `  F
)  =  ( R `
 N )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  .\/  ( R `  F ) )  =  ( P  .\/  ( R `  N )
) )
3 simp1 988 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  (
( R `  F
)  =  ( R `
 N )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
4 simp2l 1014 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  (
( R `  F
)  =  ( R `
 N )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  e.  T )
5 simp3r 1017 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  (
( R `  F
)  =  ( R `
 N )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
6 cdlemk.l . . . 4  |-  .<_  =  ( le `  K )
7 cdlemk.j . . . 4  |-  .\/  =  ( join `  K )
8 cdlemk.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdlemk.h . . . 4  |-  H  =  ( LHyp `  K
)
10 cdlemk.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
11 cdlemk.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
126, 7, 8, 9, 10, 11trljat3 33652 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  F
) )  =  ( ( F `  P
)  .\/  ( R `  F ) ) )
133, 4, 5, 12syl3anc 1218 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  (
( R `  F
)  =  ( R `
 N )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  .\/  ( R `  F ) )  =  ( ( F `  P )  .\/  ( R `  F )
) )
14 simp2r 1015 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  (
( R `  F
)  =  ( R `
 N )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  N  e.  T )
156, 7, 8, 9, 10, 11trljat1 33650 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  N
) )  =  ( P  .\/  ( N `
 P ) ) )
163, 14, 5, 15syl3anc 1218 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  (
( R `  F
)  =  ( R `
 N )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  .\/  ( R `  N ) )  =  ( P  .\/  ( N `  P )
) )
172, 13, 163eqtr3rd 2479 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  (
( R `  F
)  =  ( R `
 N )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  .\/  ( N `  P ) )  =  ( ( F `  P )  .\/  ( R `  F )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   Basecbs 14166   lecple 14237   joincjn 15106   Atomscatm 32748   HLchlt 32835   LHypclh 33468   LTrncltrn 33585   trLctrl 33642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-1st 6572  df-2nd 6573  df-map 7208  df-poset 15108  df-plt 15120  df-lub 15136  df-glb 15137  df-join 15138  df-meet 15139  df-p0 15201  df-p1 15202  df-lat 15208  df-clat 15270  df-oposet 32661  df-ol 32663  df-oml 32664  df-covers 32751  df-ats 32752  df-atl 32783  df-cvlat 32807  df-hlat 32836  df-psubsp 32987  df-pmap 32988  df-padd 33280  df-lhyp 33472  df-laut 33473  df-ldil 33588  df-ltrn 33589  df-trl 33643
This theorem is referenced by:  cdlemk5  34320
  Copyright terms: Public domain W3C validator