Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemj3 Unicode version

Theorem cdlemj3 31305
Description: Part of proof of Lemma J of [Crawley] p. 118. Eliminate  g. (Contributed by NM, 20-Jun-2013.)
Hypotheses
Ref Expression
cdlemj.b  |-  B  =  ( Base `  K
)
cdlemj.h  |-  H  =  ( LHyp `  K
)
cdlemj.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemj.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemj.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
cdlemj3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) )

Proof of Theorem cdlemj3
Dummy variables  g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 960 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 eqid 2404 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
3 eqid 2404 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 cdlemj.h . . . 4  |-  H  =  ( LHyp `  K
)
52, 3, 4lhpexle2 30492 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. u  e.  (
Atoms `  K ) ( u ( le `  K ) W  /\  u  =/=  ( R `  F )  /\  u  =/=  ( R `  h
) ) )
61, 5syl 16 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  E. u  e.  ( Atoms `  K )
( u ( le
`  K ) W  /\  u  =/=  ( R `  F )  /\  u  =/=  ( R `  h )
) )
7 simpl1l 1008 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  K  e.  HL )
87adantr 452 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  K  e.  HL )
9 simpl1r 1009 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  W  e.  H )
109adantr 452 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  W  e.  H )
11 simprl 733 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  u  e.  ( Atoms `  K ) )
12 simprr1 1005 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  u ( le `  K ) W )
13 cdlemj.b . . . . 5  |-  B  =  ( Base `  K
)
14 cdlemj.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
15 cdlemj.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
1613, 2, 3, 4, 14, 15cdlemfnid 31046 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( u  e.  ( Atoms `  K )  /\  u ( le `  K ) W ) )  ->  E. g  e.  T  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) )
178, 10, 11, 12, 16syl22anc 1185 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  E. g  e.  T  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) )
18 simp1l 981 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T
) ) )
19 simp1r 982 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  h  =/=  (  _I  |`  B ) )
20 simp3l 985 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  g  e.  T )
21 simp3rr 1031 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  g  =/=  (  _I  |`  B ) )
22 simp2r2 1060 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  u  =/=  ( R `  F
) )
2322necomd 2650 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  F )  =/=  u )
24 simp3rl 1030 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  g )  =  u )
2523, 24neeqtrrd 2591 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  F )  =/=  ( R `  g
) )
26 simp2r3 1061 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  u  =/=  ( R `  h
) )
2724, 26eqnetrd 2585 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  g )  =/=  ( R `  h
) )
28 cdlemj.e . . . . . . . 8  |-  E  =  ( ( TEndo `  K
) `  W )
2913, 4, 14, 15, 28cdlemj2 31304 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  ( U `  h )  =  ( V `  h ) )
3018, 19, 20, 21, 25, 27, 29syl132anc 1202 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( U `  h )  =  ( V `  h ) )
31303expia 1155 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( ( g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U `  h )  =  ( V `  h ) ) )
3231exp3a 426 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( g  e.  T  ->  ( ( ( R `
 g )  =  u  /\  g  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) ) ) )
3332rexlimdv 2789 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( E. g  e.  T  ( ( R `
 g )  =  u  /\  g  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) ) )
3417, 33mpd 15 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( U `  h
)  =  ( V `
 h ) )
356, 34rexlimddv 2794 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   class class class wbr 4172    _I cid 4453    |` cres 4839   ` cfv 5413   Basecbs 13424   lecple 13491   Atomscatm 29746   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   trLctrl 30640   TEndoctendo 31234
This theorem is referenced by:  tendocan  31306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-map 6979  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tendo 31237
  Copyright terms: Public domain W3C validator