Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemj3 Structured version   Unicode version

Theorem cdlemj3 35637
Description: Part of proof of Lemma J of [Crawley] p. 118. Eliminate  g. (Contributed by NM, 20-Jun-2013.)
Hypotheses
Ref Expression
cdlemj.b  |-  B  =  ( Base `  K
)
cdlemj.h  |-  H  =  ( LHyp `  K
)
cdlemj.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemj.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemj.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
cdlemj3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) )

Proof of Theorem cdlemj3
Dummy variables  g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 999 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 eqid 2467 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
3 eqid 2467 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 cdlemj.h . . . 4  |-  H  =  ( LHyp `  K
)
52, 3, 4lhpexle2 34824 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. u  e.  (
Atoms `  K ) ( u ( le `  K ) W  /\  u  =/=  ( R `  F )  /\  u  =/=  ( R `  h
) ) )
61, 5syl 16 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  E. u  e.  ( Atoms `  K )
( u ( le
`  K ) W  /\  u  =/=  ( R `  F )  /\  u  =/=  ( R `  h )
) )
7 simpl1l 1047 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  K  e.  HL )
87adantr 465 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  K  e.  HL )
9 simpl1r 1048 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  W  e.  H )
109adantr 465 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  W  e.  H )
11 simprl 755 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  u  e.  ( Atoms `  K ) )
12 simprr1 1044 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  u ( le `  K ) W )
13 cdlemj.b . . . . 5  |-  B  =  ( Base `  K
)
14 cdlemj.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
15 cdlemj.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
1613, 2, 3, 4, 14, 15cdlemfnid 35378 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( u  e.  ( Atoms `  K )  /\  u ( le `  K ) W ) )  ->  E. g  e.  T  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) )
178, 10, 11, 12, 16syl22anc 1229 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  E. g  e.  T  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) )
18 simp1l 1020 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T
) ) )
19 simp1r 1021 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  h  =/=  (  _I  |`  B ) )
20 simp3l 1024 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  g  e.  T )
21 simp3rr 1070 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  g  =/=  (  _I  |`  B ) )
22 simp2r2 1099 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  u  =/=  ( R `  F
) )
2322necomd 2738 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  F )  =/=  u )
24 simp3rl 1069 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  g )  =  u )
2523, 24neeqtrrd 2767 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  F )  =/=  ( R `  g
) )
26 simp2r3 1100 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  u  =/=  ( R `  h
) )
2724, 26eqnetrd 2760 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  g )  =/=  ( R `  h
) )
28 cdlemj.e . . . . . . . 8  |-  E  =  ( ( TEndo `  K
) `  W )
2913, 4, 14, 15, 28cdlemj2 35636 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  ( U `  h )  =  ( V `  h ) )
3018, 19, 20, 21, 25, 27, 29syl132anc 1246 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( U `  h )  =  ( V `  h ) )
31303expia 1198 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( ( g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U `  h )  =  ( V `  h ) ) )
3231expd 436 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( g  e.  T  ->  ( ( ( R `
 g )  =  u  /\  g  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) ) ) )
3332rexlimdv 2953 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( E. g  e.  T  ( ( R `
 g )  =  u  /\  g  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) ) )
3417, 33mpd 15 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( U `  h
)  =  ( V `
 h ) )
356, 34rexlimddv 2959 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815   class class class wbr 4447    _I cid 4790    |` cres 5001   ` cfv 5588   Basecbs 14490   lecple 14562   Atomscatm 34078   HLchlt 34165   LHypclh 34798   LTrncltrn 34915   trLctrl 34972   TEndoctendo 35566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-riotaBAD 33774
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-undef 7002  df-map 7422  df-poset 15433  df-plt 15445  df-lub 15461  df-glb 15462  df-join 15463  df-meet 15464  df-p0 15526  df-p1 15527  df-lat 15533  df-clat 15595  df-oposet 33991  df-ol 33993  df-oml 33994  df-covers 34081  df-ats 34082  df-atl 34113  df-cvlat 34137  df-hlat 34166  df-llines 34312  df-lplanes 34313  df-lvols 34314  df-lines 34315  df-psubsp 34317  df-pmap 34318  df-padd 34610  df-lhyp 34802  df-laut 34803  df-ldil 34918  df-ltrn 34919  df-trl 34973  df-tendo 35569
This theorem is referenced by:  tendocan  35638
  Copyright terms: Public domain W3C validator