Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemj1 Structured version   Unicode version

Theorem cdlemj1 36963
Description: Part of proof of Lemma J of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.)
Hypotheses
Ref Expression
cdlemj.b  |-  B  =  ( Base `  K
)
cdlemj.h  |-  H  =  ( LHyp `  K
)
cdlemj.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemj.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemj.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdlemj.l  |-  .<_  =  ( le `  K )
cdlemj.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdlemj1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  (
( U `  h
) `  p )  =  ( ( V `
 h ) `  p ) )

Proof of Theorem cdlemj1
StepHypRef Expression
1 simp123 1128 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  ( U `  F )  =  ( V `  F ) )
21fveq1d 5850 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  (
( U `  F
) `  p )  =  ( ( V `
 F ) `  p ) )
32oveq1d 6285 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  (
( ( U `  F ) `  p
) ( join `  K
) ( R `  ( g  o.  `' F ) ) )  =  ( ( ( V `  F ) `
 p ) (
join `  K )
( R `  (
g  o.  `' F
) ) ) )
43oveq2d 6286 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  (
( p ( join `  K ) ( R `
 g ) ) ( meet `  K
) ( ( ( U `  F ) `
 p ) (
join `  K )
( R `  (
g  o.  `' F
) ) ) )  =  ( ( p ( join `  K
) ( R `  g ) ) (
meet `  K )
( ( ( V `
 F ) `  p ) ( join `  K ) ( R `
 ( g  o.  `' F ) ) ) ) )
5 simp11 1024 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simp131 1129 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  F  e.  T )
7 simp22 1028 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  g  e.  T )
8 simp121 1126 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  U  e.  E )
9 simp33 1032 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  (
p  e.  A  /\  -.  p  .<_  W ) )
10 simp132 1130 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  F  =/=  (  _I  |`  B ) )
11 simp23 1029 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  g  =/=  (  _I  |`  B ) )
12 simp31 1030 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  ( R `  F )  =/=  ( R `  g
) )
13 cdlemj.b . . . . . . 7  |-  B  =  ( Base `  K
)
14 cdlemj.l . . . . . . 7  |-  .<_  =  ( le `  K )
15 eqid 2454 . . . . . . 7  |-  ( join `  K )  =  (
join `  K )
16 eqid 2454 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
17 cdlemj.a . . . . . . 7  |-  A  =  ( Atoms `  K )
18 cdlemj.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
19 cdlemj.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
20 cdlemj.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
21 cdlemj.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
22 eqid 2454 . . . . . . 7  |-  ( ( p ( join `  K
) ( R `  g ) ) (
meet `  K )
( ( ( U `
 F ) `  p ) ( join `  K ) ( R `
 ( g  o.  `' F ) ) ) )  =  ( ( p ( join `  K
) ( R `  g ) ) (
meet `  K )
( ( ( U `
 F ) `  p ) ( join `  K ) ( R `
 ( g  o.  `' F ) ) ) )
2313, 14, 15, 16, 17, 18, 19, 20, 21, 22cdlemi 36962 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  g  e.  T )  /\  ( U  e.  E  /\  ( p  e.  A  /\  -.  p  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  g  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  g ) ) )  ->  ( ( U `
 g ) `  p )  =  ( ( p ( join `  K ) ( R `
 g ) ) ( meet `  K
) ( ( ( U `  F ) `
 p ) (
join `  K )
( R `  (
g  o.  `' F
) ) ) ) )
245, 6, 7, 8, 9, 10, 11, 12, 23syl323anc 1256 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  (
( U `  g
) `  p )  =  ( ( p ( join `  K
) ( R `  g ) ) (
meet `  K )
( ( ( U `
 F ) `  p ) ( join `  K ) ( R `
 ( g  o.  `' F ) ) ) ) )
25 simp122 1127 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  V  e.  E )
26 eqid 2454 . . . . . . 7  |-  ( ( p ( join `  K
) ( R `  g ) ) (
meet `  K )
( ( ( V `
 F ) `  p ) ( join `  K ) ( R `
 ( g  o.  `' F ) ) ) )  =  ( ( p ( join `  K
) ( R `  g ) ) (
meet `  K )
( ( ( V `
 F ) `  p ) ( join `  K ) ( R `
 ( g  o.  `' F ) ) ) )
2713, 14, 15, 16, 17, 18, 19, 20, 21, 26cdlemi 36962 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  g  e.  T )  /\  ( V  e.  E  /\  ( p  e.  A  /\  -.  p  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  g  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  g ) ) )  ->  ( ( V `
 g ) `  p )  =  ( ( p ( join `  K ) ( R `
 g ) ) ( meet `  K
) ( ( ( V `  F ) `
 p ) (
join `  K )
( R `  (
g  o.  `' F
) ) ) ) )
285, 6, 7, 25, 9, 10, 11, 12, 27syl323anc 1256 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  (
( V `  g
) `  p )  =  ( ( p ( join `  K
) ( R `  g ) ) (
meet `  K )
( ( ( V `
 F ) `  p ) ( join `  K ) ( R `
 ( g  o.  `' F ) ) ) ) )
294, 24, 283eqtr4d 2505 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  (
( U `  g
) `  p )  =  ( ( V `
 g ) `  p ) )
3029oveq1d 6285 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  (
( ( U `  g ) `  p
) ( join `  K
) ( R `  ( h  o.  `' g ) ) )  =  ( ( ( V `  g ) `
 p ) (
join `  K )
( R `  (
h  o.  `' g ) ) ) )
3130oveq2d 6286 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  (
( p ( join `  K ) ( R `
 h ) ) ( meet `  K
) ( ( ( U `  g ) `
 p ) (
join `  K )
( R `  (
h  o.  `' g ) ) ) )  =  ( ( p ( join `  K
) ( R `  h ) ) (
meet `  K )
( ( ( V `
 g ) `  p ) ( join `  K ) ( R `
 ( h  o.  `' g ) ) ) ) )
32 simp133 1131 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  h  e.  T )
33 simp21 1027 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  h  =/=  (  _I  |`  B ) )
34 simp32 1031 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  ( R `  g )  =/=  ( R `  h
) )
35 eqid 2454 . . . 4  |-  ( ( p ( join `  K
) ( R `  h ) ) (
meet `  K )
( ( ( U `
 g ) `  p ) ( join `  K ) ( R `
 ( h  o.  `' g ) ) ) )  =  ( ( p ( join `  K ) ( R `
 h ) ) ( meet `  K
) ( ( ( U `  g ) `
 p ) (
join `  K )
( R `  (
h  o.  `' g ) ) ) )
3613, 14, 15, 16, 17, 18, 19, 20, 21, 35cdlemi 36962 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  h  e.  T )  /\  ( U  e.  E  /\  ( p  e.  A  /\  -.  p  .<_  W ) )  /\  ( g  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  g )  =/=  ( R `  h ) ) )  ->  ( ( U `
 h ) `  p )  =  ( ( p ( join `  K ) ( R `
 h ) ) ( meet `  K
) ( ( ( U `  g ) `
 p ) (
join `  K )
( R `  (
h  o.  `' g ) ) ) ) )
375, 7, 32, 8, 9, 11, 33, 34, 36syl323anc 1256 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  (
( U `  h
) `  p )  =  ( ( p ( join `  K
) ( R `  h ) ) (
meet `  K )
( ( ( U `
 g ) `  p ) ( join `  K ) ( R `
 ( h  o.  `' g ) ) ) ) )
38 eqid 2454 . . . 4  |-  ( ( p ( join `  K
) ( R `  h ) ) (
meet `  K )
( ( ( V `
 g ) `  p ) ( join `  K ) ( R `
 ( h  o.  `' g ) ) ) )  =  ( ( p ( join `  K ) ( R `
 h ) ) ( meet `  K
) ( ( ( V `  g ) `
 p ) (
join `  K )
( R `  (
h  o.  `' g ) ) ) )
3913, 14, 15, 16, 17, 18, 19, 20, 21, 38cdlemi 36962 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  h  e.  T )  /\  ( V  e.  E  /\  ( p  e.  A  /\  -.  p  .<_  W ) )  /\  ( g  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  g )  =/=  ( R `  h ) ) )  ->  ( ( V `
 h ) `  p )  =  ( ( p ( join `  K ) ( R `
 h ) ) ( meet `  K
) ( ( ( V `  g ) `
 p ) (
join `  K )
( R `  (
h  o.  `' g ) ) ) ) )
405, 7, 32, 25, 9, 11, 33, 34, 39syl323anc 1256 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  (
( V `  h
) `  p )  =  ( ( p ( join `  K
) ( R `  h ) ) (
meet `  K )
( ( ( V `
 g ) `  p ) ( join `  K ) ( R `
 ( h  o.  `' g ) ) ) ) )
4131, 37, 403eqtr4d 2505 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  A  /\  -.  p  .<_  W ) ) )  ->  (
( U `  h
) `  p )  =  ( ( V `
 h ) `  p ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   class class class wbr 4439    _I cid 4779   `'ccnv 4987    |` cres 4990    o. ccom 4992   ` cfv 5570  (class class class)co 6270   Basecbs 14719   lecple 14794   joincjn 15775   meetcmee 15776   Atomscatm 35404   HLchlt 35491   LHypclh 36124   LTrncltrn 36241   trLctrl 36299   TEndoctendo 36894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-riotaBAD 35100
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-undef 6994  df-map 7414  df-preset 15759  df-poset 15777  df-plt 15790  df-lub 15806  df-glb 15807  df-join 15808  df-meet 15809  df-p0 15871  df-p1 15872  df-lat 15878  df-clat 15940  df-oposet 35317  df-ol 35319  df-oml 35320  df-covers 35407  df-ats 35408  df-atl 35439  df-cvlat 35463  df-hlat 35492  df-llines 35638  df-lplanes 35639  df-lvols 35640  df-lines 35641  df-psubsp 35643  df-pmap 35644  df-padd 35936  df-lhyp 36128  df-laut 36129  df-ldil 36244  df-ltrn 36245  df-trl 36300  df-tendo 36897
This theorem is referenced by:  cdlemj2  36964
  Copyright terms: Public domain W3C validator