Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemi2 Structured version   Unicode version

Theorem cdlemi2 34821
Description: Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
Hypotheses
Ref Expression
cdlemi.b  |-  B  =  ( Base `  K
)
cdlemi.l  |-  .<_  =  ( le `  K )
cdlemi.j  |-  .\/  =  ( join `  K )
cdlemi.m  |-  ./\  =  ( meet `  K )
cdlemi.a  |-  A  =  ( Atoms `  K )
cdlemi.h  |-  H  =  ( LHyp `  K
)
cdlemi.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemi.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemi.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
cdlemi2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( U `  G ) `  P )  .<_  ( ( ( U `  F
) `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )

Proof of Theorem cdlemi2
StepHypRef Expression
1 simp1l 1012 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
2 simp1r 1013 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
3 simp21 1021 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  U  e.  E )
4 simp1 988 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simp23 1023 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G  e.  T )
6 simp22 1022 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
7 cdlemi.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
8 cdlemi.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
97, 8ltrncnv 34148 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
104, 6, 9syl2anc 661 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  `' F  e.  T )
117, 8ltrnco 34721 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' F  e.  T
)  ->  ( G  o.  `' F )  e.  T
)
124, 5, 10, 11syl3anc 1219 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  `' F )  e.  T
)
13 cdlemi.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
147, 8, 13tendovalco 34767 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  U  e.  E )  /\  ( ( G  o.  `' F )  e.  T  /\  F  e.  T
) )  ->  ( U `  ( ( G  o.  `' F
)  o.  F ) )  =  ( ( U `  ( G  o.  `' F ) )  o.  ( U `
 F ) ) )
151, 2, 3, 12, 6, 14syl32anc 1227 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( U `  ( ( G  o.  `' F )  o.  F
) )  =  ( ( U `  ( G  o.  `' F
) )  o.  ( U `  F )
) )
16 coass 5467 . . . . . . 7  |-  ( ( G  o.  `' F
)  o.  F )  =  ( G  o.  ( `' F  o.  F
) )
17 cdlemi.b . . . . . . . . . . . 12  |-  B  =  ( Base `  K
)
1817, 7, 8ltrn1o 34126 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
194, 6, 18syl2anc 661 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F : B
-1-1-onto-> B )
20 f1ococnv1 5780 . . . . . . . . . 10  |-  ( F : B -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  B ) )
2119, 20syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( `' F  o.  F )  =  (  _I  |`  B ) )
2221coeq2d 5113 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  ( `' F  o.  F ) )  =  ( G  o.  (  _I  |`  B ) ) )
2317, 7, 8ltrn1o 34126 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G : B
-1-1-onto-> B )
244, 5, 23syl2anc 661 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G : B
-1-1-onto-> B )
25 f1of 5752 . . . . . . . . 9  |-  ( G : B -1-1-onto-> B  ->  G : B
--> B )
26 fcoi1 5696 . . . . . . . . 9  |-  ( G : B --> B  -> 
( G  o.  (  _I  |`  B ) )  =  G )
2724, 25, 263syl 20 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  (  _I  |`  B ) )  =  G )
2822, 27eqtrd 2495 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  ( `' F  o.  F ) )  =  G )
2916, 28syl5eq 2507 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G  o.  `' F
)  o.  F )  =  G )
3029fveq2d 5806 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( U `  ( ( G  o.  `' F )  o.  F
) )  =  ( U `  G ) )
3115, 30eqtr3d 2497 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( U `  ( G  o.  `' F ) )  o.  ( U `  F
) )  =  ( U `  G ) )
3231fveq1d 5804 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( U `  ( G  o.  `' F
) )  o.  ( U `  F )
) `  P )  =  ( ( U `
 G ) `  P ) )
337, 8, 13tendocl 34769 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( G  o.  `' F )  e.  T
)  ->  ( U `  ( G  o.  `' F ) )  e.  T )
344, 3, 12, 33syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( U `  ( G  o.  `' F ) )  e.  T )
357, 8, 13tendocl 34769 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  F  e.  T
)  ->  ( U `  F )  e.  T
)
364, 3, 6, 35syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( U `  F )  e.  T
)
37 simp3l 1016 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
38 cdlemi.l . . . . 5  |-  .<_  =  ( le `  K )
39 cdlemi.a . . . . 5  |-  A  =  ( Atoms `  K )
4038, 39, 7, 8ltrncoval 34147 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( U `
 ( G  o.  `' F ) )  e.  T  /\  ( U `
 F )  e.  T )  /\  P  e.  A )  ->  (
( ( U `  ( G  o.  `' F ) )  o.  ( U `  F
) ) `  P
)  =  ( ( U `  ( G  o.  `' F ) ) `  ( ( U `  F ) `
 P ) ) )
414, 34, 36, 37, 40syl121anc 1224 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( U `  ( G  o.  `' F
) )  o.  ( U `  F )
) `  P )  =  ( ( U `
 ( G  o.  `' F ) ) `  ( ( U `  F ) `  P
) ) )
4232, 41eqtr3d 2497 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( U `  G ) `  P )  =  ( ( U `  ( G  o.  `' F
) ) `  (
( U `  F
) `  P )
) )
4338, 39, 7, 8ltrnel 34141 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  F )  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( U `  F
) `  P )  e.  A  /\  -.  (
( U `  F
) `  P )  .<_  W ) )
4436, 43syld3an2 1266 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( U `  F
) `  P )  e.  A  /\  -.  (
( U `  F
) `  P )  .<_  W ) )
45 cdlemi.j . . . 4  |-  .\/  =  ( join `  K )
46 cdlemi.m . . . 4  |-  ./\  =  ( meet `  K )
47 cdlemi.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
4817, 38, 45, 46, 39, 7, 8, 47, 13cdlemi1 34820 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  ( G  o.  `' F )  e.  T )  /\  ( ( ( U `
 F ) `  P )  e.  A  /\  -.  ( ( U `
 F ) `  P )  .<_  W ) )  ->  ( ( U `  ( G  o.  `' F ) ) `  ( ( U `  F ) `  P
) )  .<_  ( ( ( U `  F
) `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )
494, 3, 12, 44, 48syl121anc 1224 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( U `  ( G  o.  `' F ) ) `  ( ( U `  F ) `  P
) )  .<_  ( ( ( U `  F
) `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )
5042, 49eqbrtrd 4423 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( U `  G ) `  P )  .<_  ( ( ( U `  F
) `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4403    _I cid 4742   `'ccnv 4950    |` cres 4953    o. ccom 4955   -->wf 5525   -1-1-onto->wf1o 5528   ` cfv 5529  (class class class)co 6203   Basecbs 14295   lecple 14367   joincjn 15236   meetcmee 15237   Atomscatm 33266   HLchlt 33353   LHypclh 33986   LTrncltrn 34103   trLctrl 34160   TEndoctendo 34754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-riotaBAD 32962
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-undef 6905  df-map 7329  df-poset 15238  df-plt 15250  df-lub 15266  df-glb 15267  df-join 15268  df-meet 15269  df-p0 15331  df-p1 15332  df-lat 15338  df-clat 15400  df-oposet 33179  df-ol 33181  df-oml 33182  df-covers 33269  df-ats 33270  df-atl 33301  df-cvlat 33325  df-hlat 33354  df-llines 33500  df-lplanes 33501  df-lvols 33502  df-lines 33503  df-psubsp 33505  df-pmap 33506  df-padd 33798  df-lhyp 33990  df-laut 33991  df-ldil 34106  df-ltrn 34107  df-trl 34161  df-tendo 34757
This theorem is referenced by:  cdlemi  34822
  Copyright terms: Public domain W3C validator