Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemi2 Structured version   Unicode version

Theorem cdlemi2 35832
Description: Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
Hypotheses
Ref Expression
cdlemi.b  |-  B  =  ( Base `  K
)
cdlemi.l  |-  .<_  =  ( le `  K )
cdlemi.j  |-  .\/  =  ( join `  K )
cdlemi.m  |-  ./\  =  ( meet `  K )
cdlemi.a  |-  A  =  ( Atoms `  K )
cdlemi.h  |-  H  =  ( LHyp `  K
)
cdlemi.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemi.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemi.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
cdlemi2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( U `  G ) `  P )  .<_  ( ( ( U `  F
) `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )

Proof of Theorem cdlemi2
StepHypRef Expression
1 simp1l 1020 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
2 simp1r 1021 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
3 simp21 1029 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  U  e.  E )
4 simp1 996 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simp23 1031 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G  e.  T )
6 simp22 1030 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
7 cdlemi.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
8 cdlemi.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
97, 8ltrncnv 35159 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
104, 6, 9syl2anc 661 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  `' F  e.  T )
117, 8ltrnco 35732 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' F  e.  T
)  ->  ( G  o.  `' F )  e.  T
)
124, 5, 10, 11syl3anc 1228 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  `' F )  e.  T
)
13 cdlemi.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
147, 8, 13tendovalco 35778 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  U  e.  E )  /\  ( ( G  o.  `' F )  e.  T  /\  F  e.  T
) )  ->  ( U `  ( ( G  o.  `' F
)  o.  F ) )  =  ( ( U `  ( G  o.  `' F ) )  o.  ( U `
 F ) ) )
151, 2, 3, 12, 6, 14syl32anc 1236 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( U `  ( ( G  o.  `' F )  o.  F
) )  =  ( ( U `  ( G  o.  `' F
) )  o.  ( U `  F )
) )
16 coass 5526 . . . . . . 7  |-  ( ( G  o.  `' F
)  o.  F )  =  ( G  o.  ( `' F  o.  F
) )
17 cdlemi.b . . . . . . . . . . . 12  |-  B  =  ( Base `  K
)
1817, 7, 8ltrn1o 35137 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
194, 6, 18syl2anc 661 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F : B
-1-1-onto-> B )
20 f1ococnv1 5844 . . . . . . . . . 10  |-  ( F : B -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  B ) )
2119, 20syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( `' F  o.  F )  =  (  _I  |`  B ) )
2221coeq2d 5165 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  ( `' F  o.  F ) )  =  ( G  o.  (  _I  |`  B ) ) )
2317, 7, 8ltrn1o 35137 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G : B
-1-1-onto-> B )
244, 5, 23syl2anc 661 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G : B
-1-1-onto-> B )
25 f1of 5816 . . . . . . . . 9  |-  ( G : B -1-1-onto-> B  ->  G : B
--> B )
26 fcoi1 5759 . . . . . . . . 9  |-  ( G : B --> B  -> 
( G  o.  (  _I  |`  B ) )  =  G )
2724, 25, 263syl 20 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  (  _I  |`  B ) )  =  G )
2822, 27eqtrd 2508 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  ( `' F  o.  F ) )  =  G )
2916, 28syl5eq 2520 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G  o.  `' F
)  o.  F )  =  G )
3029fveq2d 5870 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( U `  ( ( G  o.  `' F )  o.  F
) )  =  ( U `  G ) )
3115, 30eqtr3d 2510 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( U `  ( G  o.  `' F ) )  o.  ( U `  F
) )  =  ( U `  G ) )
3231fveq1d 5868 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( U `  ( G  o.  `' F
) )  o.  ( U `  F )
) `  P )  =  ( ( U `
 G ) `  P ) )
337, 8, 13tendocl 35780 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( G  o.  `' F )  e.  T
)  ->  ( U `  ( G  o.  `' F ) )  e.  T )
344, 3, 12, 33syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( U `  ( G  o.  `' F ) )  e.  T )
357, 8, 13tendocl 35780 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  F  e.  T
)  ->  ( U `  F )  e.  T
)
364, 3, 6, 35syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( U `  F )  e.  T
)
37 simp3l 1024 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
38 cdlemi.l . . . . 5  |-  .<_  =  ( le `  K )
39 cdlemi.a . . . . 5  |-  A  =  ( Atoms `  K )
4038, 39, 7, 8ltrncoval 35158 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( U `
 ( G  o.  `' F ) )  e.  T  /\  ( U `
 F )  e.  T )  /\  P  e.  A )  ->  (
( ( U `  ( G  o.  `' F ) )  o.  ( U `  F
) ) `  P
)  =  ( ( U `  ( G  o.  `' F ) ) `  ( ( U `  F ) `
 P ) ) )
414, 34, 36, 37, 40syl121anc 1233 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( U `  ( G  o.  `' F
) )  o.  ( U `  F )
) `  P )  =  ( ( U `
 ( G  o.  `' F ) ) `  ( ( U `  F ) `  P
) ) )
4232, 41eqtr3d 2510 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( U `  G ) `  P )  =  ( ( U `  ( G  o.  `' F
) ) `  (
( U `  F
) `  P )
) )
4338, 39, 7, 8ltrnel 35152 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  F )  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( U `  F
) `  P )  e.  A  /\  -.  (
( U `  F
) `  P )  .<_  W ) )
4436, 43syld3an2 1275 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( U `  F
) `  P )  e.  A  /\  -.  (
( U `  F
) `  P )  .<_  W ) )
45 cdlemi.j . . . 4  |-  .\/  =  ( join `  K )
46 cdlemi.m . . . 4  |-  ./\  =  ( meet `  K )
47 cdlemi.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
4817, 38, 45, 46, 39, 7, 8, 47, 13cdlemi1 35831 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  ( G  o.  `' F )  e.  T )  /\  ( ( ( U `
 F ) `  P )  e.  A  /\  -.  ( ( U `
 F ) `  P )  .<_  W ) )  ->  ( ( U `  ( G  o.  `' F ) ) `  ( ( U `  F ) `  P
) )  .<_  ( ( ( U `  F
) `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )
494, 3, 12, 44, 48syl121anc 1233 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( U `  ( G  o.  `' F ) ) `  ( ( U `  F ) `  P
) )  .<_  ( ( ( U `  F
) `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )
5042, 49eqbrtrd 4467 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( U `  G ) `  P )  .<_  ( ( ( U `  F
) `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4447    _I cid 4790   `'ccnv 4998    |` cres 5001    o. ccom 5003   -->wf 5584   -1-1-onto->wf1o 5587   ` cfv 5588  (class class class)co 6285   Basecbs 14493   lecple 14565   joincjn 15434   meetcmee 15435   Atomscatm 34277   HLchlt 34364   LHypclh 34997   LTrncltrn 35114   trLctrl 35171   TEndoctendo 35765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-riotaBAD 33973
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-1st 6785  df-2nd 6786  df-undef 7003  df-map 7423  df-poset 15436  df-plt 15448  df-lub 15464  df-glb 15465  df-join 15466  df-meet 15467  df-p0 15529  df-p1 15530  df-lat 15536  df-clat 15598  df-oposet 34190  df-ol 34192  df-oml 34193  df-covers 34280  df-ats 34281  df-atl 34312  df-cvlat 34336  df-hlat 34365  df-llines 34511  df-lplanes 34512  df-lvols 34513  df-lines 34514  df-psubsp 34516  df-pmap 34517  df-padd 34809  df-lhyp 35001  df-laut 35002  df-ldil 35117  df-ltrn 35118  df-trl 35172  df-tendo 35768
This theorem is referenced by:  cdlemi  35833
  Copyright terms: Public domain W3C validator