Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg9b Structured version   Unicode version

Theorem cdlemg9b 35306
Description: The triples  <. P , 
( F `  ( G `  P )
) ,  ( F `
 P ) >. and  <. Q , 
( F `  ( G `  Q )
) ,  ( F `
 Q ) >. are centrally perspective. TODO: FIX COMMENT (Contributed by NM, 1-May-2013.)
Hypotheses
Ref Expression
cdlemg8.l  |-  .<_  =  ( le `  K )
cdlemg8.j  |-  .\/  =  ( join `  K )
cdlemg8.m  |-  ./\  =  ( meet `  K )
cdlemg8.a  |-  A  =  ( Atoms `  K )
cdlemg8.h  |-  H  =  ( LHyp `  K
)
cdlemg8.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemg9b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) ) )  .<_  ( ( G `  P )  .\/  ( G `  Q
) ) )

Proof of Theorem cdlemg9b
StepHypRef Expression
1 cdlemg8.l . . 3  |-  .<_  =  ( le `  K )
2 cdlemg8.j . . 3  |-  .\/  =  ( join `  K )
3 cdlemg8.m . . 3  |-  ./\  =  ( meet `  K )
4 cdlemg8.a . . 3  |-  A  =  ( Atoms `  K )
5 cdlemg8.h . . 3  |-  H  =  ( LHyp `  K
)
6 cdlemg8.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
7 eqid 2462 . . 3  |-  ( ( P  .\/  Q ) 
./\  W )  =  ( ( P  .\/  Q )  ./\  W )
81, 2, 3, 4, 5, 6, 7cdlemg9a 35305 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  ./\  (
( F `  ( G `  P )
)  .\/  ( ( P  .\/  Q )  ./\  W ) ) )  .<_  ( ( G `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) )
9 simp1l 1015 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
10 simp1r 1016 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  W  e.  H )
11 simp21 1024 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
12 simp22l 1110 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  Q  e.  A )
131, 2, 3, 4, 5, 7cdlemg3a 35270 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  ->  ( P  .\/  Q )  =  ( P  .\/  (
( P  .\/  Q
)  ./\  W )
) )
149, 10, 11, 12, 13syl211anc 1229 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( P  .\/  Q )  =  ( P  .\/  ( ( P  .\/  Q ) 
./\  W ) ) )
15 simp1 991 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
16 simp22 1025 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
17 simp23 1026 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  F  e.  T )
18 simp31 1027 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  G  e.  T )
195, 6, 1, 2, 4, 3, 7cdlemg2l 35276 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =  ( ( F `
 ( G `  P ) )  .\/  ( ( P  .\/  Q )  ./\  W )
) )
2015, 11, 16, 17, 18, 19syl122anc 1232 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =  ( ( F `  ( G `
 P ) ) 
.\/  ( ( P 
.\/  Q )  ./\  W ) ) )
2114, 20oveq12d 6295 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) ) )  =  ( ( P  .\/  ( ( P  .\/  Q ) 
./\  W ) ) 
./\  ( ( F `
 ( G `  P ) )  .\/  ( ( P  .\/  Q )  ./\  W )
) ) )
225, 6, 1, 2, 4, 3, 7cdlemg2k 35274 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  G  e.  T )  ->  (
( G `  P
)  .\/  ( G `  Q ) )  =  ( ( G `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) )
2315, 11, 16, 18, 22syl121anc 1228 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( G `  P )  .\/  ( G `  Q
) )  =  ( ( G `  P
)  .\/  ( ( P  .\/  Q )  ./\  W ) ) )
248, 21, 233brtr4d 4472 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) ) )  .<_  ( ( G `  P )  .\/  ( G `  Q
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2657   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   lecple 14553   joincjn 15422   meetcmee 15423   Atomscatm 33937   HLchlt 34024   LHypclh 34657   LTrncltrn 34774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-riotaBAD 33633
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-iin 4323  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6776  df-2nd 6777  df-undef 6994  df-map 7414  df-poset 15424  df-plt 15436  df-lub 15452  df-glb 15453  df-join 15454  df-meet 15455  df-p0 15517  df-p1 15518  df-lat 15524  df-clat 15586  df-oposet 33850  df-ol 33852  df-oml 33853  df-covers 33940  df-ats 33941  df-atl 33972  df-cvlat 33996  df-hlat 34025  df-llines 34171  df-lplanes 34172  df-lvols 34173  df-lines 34174  df-psubsp 34176  df-pmap 34177  df-padd 34469  df-lhyp 34661  df-laut 34662  df-ldil 34777  df-ltrn 34778  df-trl 34832
This theorem is referenced by:  cdlemg9  35307
  Copyright terms: Public domain W3C validator