Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg9b Structured version   Unicode version

Theorem cdlemg9b 33633
Description: The triples  <. P , 
( F `  ( G `  P )
) ,  ( F `
 P ) >. and  <. Q , 
( F `  ( G `  Q )
) ,  ( F `
 Q ) >. are centrally perspective. TODO: FIX COMMENT (Contributed by NM, 1-May-2013.)
Hypotheses
Ref Expression
cdlemg8.l  |-  .<_  =  ( le `  K )
cdlemg8.j  |-  .\/  =  ( join `  K )
cdlemg8.m  |-  ./\  =  ( meet `  K )
cdlemg8.a  |-  A  =  ( Atoms `  K )
cdlemg8.h  |-  H  =  ( LHyp `  K
)
cdlemg8.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemg9b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) ) )  .<_  ( ( G `  P )  .\/  ( G `  Q
) ) )

Proof of Theorem cdlemg9b
StepHypRef Expression
1 cdlemg8.l . . 3  |-  .<_  =  ( le `  K )
2 cdlemg8.j . . 3  |-  .\/  =  ( join `  K )
3 cdlemg8.m . . 3  |-  ./\  =  ( meet `  K )
4 cdlemg8.a . . 3  |-  A  =  ( Atoms `  K )
5 cdlemg8.h . . 3  |-  H  =  ( LHyp `  K
)
6 cdlemg8.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
7 eqid 2402 . . 3  |-  ( ( P  .\/  Q ) 
./\  W )  =  ( ( P  .\/  Q )  ./\  W )
81, 2, 3, 4, 5, 6, 7cdlemg9a 33632 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  ./\  (
( F `  ( G `  P )
)  .\/  ( ( P  .\/  Q )  ./\  W ) ) )  .<_  ( ( G `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) )
9 simp1l 1021 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
10 simp1r 1022 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  W  e.  H )
11 simp21 1030 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
12 simp22l 1116 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  Q  e.  A )
131, 2, 3, 4, 5, 7cdlemg3a 33597 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  ->  ( P  .\/  Q )  =  ( P  .\/  (
( P  .\/  Q
)  ./\  W )
) )
149, 10, 11, 12, 13syl211anc 1236 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( P  .\/  Q )  =  ( P  .\/  ( ( P  .\/  Q ) 
./\  W ) ) )
15 simp1 997 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
16 simp22 1031 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
17 simp23 1032 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  F  e.  T )
18 simp31 1033 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  G  e.  T )
195, 6, 1, 2, 4, 3, 7cdlemg2l 33603 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =  ( ( F `
 ( G `  P ) )  .\/  ( ( P  .\/  Q )  ./\  W )
) )
2015, 11, 16, 17, 18, 19syl122anc 1239 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =  ( ( F `  ( G `
 P ) ) 
.\/  ( ( P 
.\/  Q )  ./\  W ) ) )
2114, 20oveq12d 6252 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) ) )  =  ( ( P  .\/  ( ( P  .\/  Q ) 
./\  W ) ) 
./\  ( ( F `
 ( G `  P ) )  .\/  ( ( P  .\/  Q )  ./\  W )
) ) )
225, 6, 1, 2, 4, 3, 7cdlemg2k 33601 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  G  e.  T )  ->  (
( G `  P
)  .\/  ( G `  Q ) )  =  ( ( G `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) )
2315, 11, 16, 18, 22syl121anc 1235 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( G `  P )  .\/  ( G `  Q
) )  =  ( ( G `  P
)  .\/  ( ( P  .\/  Q )  ./\  W ) ) )
248, 21, 233brtr4d 4424 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) ) )  .<_  ( ( G `  P )  .\/  ( G `  Q
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   class class class wbr 4394   ` cfv 5525  (class class class)co 6234   lecple 14808   joincjn 15789   meetcmee 15790   Atomscatm 32262   HLchlt 32349   LHypclh 32982   LTrncltrn 33099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-riotaBAD 31958
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-1st 6738  df-2nd 6739  df-undef 6959  df-map 7379  df-preset 15773  df-poset 15791  df-plt 15804  df-lub 15820  df-glb 15821  df-join 15822  df-meet 15823  df-p0 15885  df-p1 15886  df-lat 15892  df-clat 15954  df-oposet 32175  df-ol 32177  df-oml 32178  df-covers 32265  df-ats 32266  df-atl 32297  df-cvlat 32321  df-hlat 32350  df-llines 32496  df-lplanes 32497  df-lvols 32498  df-lines 32499  df-psubsp 32501  df-pmap 32502  df-padd 32794  df-lhyp 32986  df-laut 32987  df-ldil 33102  df-ltrn 33103  df-trl 33158
This theorem is referenced by:  cdlemg9  33634
  Copyright terms: Public domain W3C validator