Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg4e Structured version   Unicode version

Theorem cdlemg4e 34621
Description: TODO: FIX COMMENT (Contributed by NM, 25-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l  |-  .<_  =  ( le `  K )
cdlemg4.a  |-  A  =  ( Atoms `  K )
cdlemg4.h  |-  H  =  ( LHyp `  K
)
cdlemg4.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg4.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg4.j  |-  .\/  =  ( join `  K )
cdlemg4b.v  |-  V  =  ( R `  G
)
cdlemg4.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
cdlemg4e  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( F `  ( G `  Q ) )  =  ( ( ( G `
 Q )  .\/  ( R `  F ) )  ./\  ( ( F `  ( G `  P ) )  .\/  ( ( ( G `
 P )  .\/  ( G `  Q ) )  ./\  W )
) ) )

Proof of Theorem cdlemg4e
StepHypRef Expression
1 simp1 988 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp23 1023 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  F  e.  T )
3 simp31 1024 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  G  e.  T )
4 simp21 1021 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
5 cdlemg4.l . . . 4  |-  .<_  =  ( le `  K )
6 cdlemg4.a . . . 4  |-  A  =  ( Atoms `  K )
7 cdlemg4.h . . . 4  |-  H  =  ( LHyp `  K
)
8 cdlemg4.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
95, 6, 7, 8ltrnel 34146 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
101, 3, 4, 9syl3anc 1219 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  (
( G `  P
)  e.  A  /\  -.  ( G `  P
)  .<_  W ) )
11 simp22 1022 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
125, 6, 7, 8ltrnel 34146 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( ( G `  Q )  e.  A  /\  -.  ( G `  Q )  .<_  W ) )
131, 3, 11, 12syl3anc 1219 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  (
( G `  Q
)  e.  A  /\  -.  ( G `  Q
)  .<_  W ) )
14 cdlemg4.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
15 cdlemg4.j . . 3  |-  .\/  =  ( join `  K )
16 cdlemg4b.v . . 3  |-  V  =  ( R `  G
)
175, 6, 7, 8, 14, 15, 16cdlemg4d 34620 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  -.  ( G `  Q ) 
.<_  ( ( G `  P )  .\/  ( F `  ( G `  P ) ) ) )
18 cdlemg4.m . . 3  |-  ./\  =  ( meet `  K )
195, 15, 18, 6, 7, 8, 14cdlemc 34204 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( ( G `  P )  e.  A  /\  -.  ( G `  P ) 
.<_  W )  /\  (
( G `  Q
)  e.  A  /\  -.  ( G `  Q
)  .<_  W ) )  /\  -.  ( G `
 Q )  .<_  ( ( G `  P )  .\/  ( F `  ( G `  P ) ) ) )  ->  ( F `  ( G `  Q
) )  =  ( ( ( G `  Q )  .\/  ( R `  F )
)  ./\  ( ( F `  ( G `  P ) )  .\/  ( ( ( G `
 P )  .\/  ( G `  Q ) )  ./\  W )
) ) )
201, 2, 10, 13, 17, 19syl131anc 1232 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( F `  ( G `  Q ) )  =  ( ( ( G `
 Q )  .\/  ( R `  F ) )  ./\  ( ( F `  ( G `  P ) )  .\/  ( ( ( G `
 P )  .\/  ( G `  Q ) )  ./\  W )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   lecple 14368   joincjn 15237   meetcmee 15238   Atomscatm 33271   HLchlt 33358   LHypclh 33991   LTrncltrn 34108   trLctrl 34165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-map 7329  df-poset 15239  df-plt 15251  df-lub 15267  df-glb 15268  df-join 15269  df-meet 15270  df-p0 15332  df-p1 15333  df-lat 15339  df-clat 15401  df-oposet 33184  df-ol 33186  df-oml 33187  df-covers 33274  df-ats 33275  df-atl 33306  df-cvlat 33330  df-hlat 33359  df-llines 33505  df-psubsp 33510  df-pmap 33511  df-padd 33803  df-lhyp 33995  df-laut 33996  df-ldil 34111  df-ltrn 34112  df-trl 34166
This theorem is referenced by:  cdlemg4f  34622
  Copyright terms: Public domain W3C validator