Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg4d Structured version   Unicode version

Theorem cdlemg4d 33612
Description: TODO: FIX COMMENT (Contributed by NM, 25-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l  |-  .<_  =  ( le `  K )
cdlemg4.a  |-  A  =  ( Atoms `  K )
cdlemg4.h  |-  H  =  ( LHyp `  K
)
cdlemg4.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg4.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg4.j  |-  .\/  =  ( join `  K )
cdlemg4b.v  |-  V  =  ( R `  G
)
Assertion
Ref Expression
cdlemg4d  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  -.  ( G `  Q ) 
.<_  ( ( G `  P )  .\/  ( F `  ( G `  P ) ) ) )

Proof of Theorem cdlemg4d
StepHypRef Expression
1 simp1 997 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21 1030 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp22 1031 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp31 1033 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  G  e.  T )
5 simp32 1034 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  -.  Q  .<_  ( P  .\/  V ) )
6 cdlemg4.l . . . 4  |-  .<_  =  ( le `  K )
7 cdlemg4.a . . . 4  |-  A  =  ( Atoms `  K )
8 cdlemg4.h . . . 4  |-  H  =  ( LHyp `  K
)
9 cdlemg4.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
10 cdlemg4.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
11 cdlemg4.j . . . 4  |-  .\/  =  ( join `  K )
12 cdlemg4b.v . . . 4  |-  V  =  ( R `  G
)
136, 7, 8, 9, 10, 11, 12cdlemg4c 33611 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
)  /\  -.  Q  .<_  ( P  .\/  V
) )  ->  -.  ( G `  Q ) 
.<_  ( P  .\/  V
) )
141, 2, 3, 4, 5, 13syl131anc 1243 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  -.  ( G `  Q ) 
.<_  ( P  .\/  V
) )
15 simp1l 1021 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  K  e.  HL )
16 simp21l 1114 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  P  e.  A )
176, 7, 8, 9ltrnel 33136 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
1817simpld 457 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G `  P )  e.  A
)
191, 4, 2, 18syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( G `  P )  e.  A )
2011, 7hlatjcom 32365 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( G `  P )  e.  A )  -> 
( P  .\/  ( G `  P )
)  =  ( ( G `  P ) 
.\/  P ) )
2115, 16, 19, 20syl3anc 1230 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( P  .\/  ( G `  P ) )  =  ( ( G `  P )  .\/  P
) )
226, 7, 8, 9, 10, 11, 12cdlemg4b1 33608 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  G  e.  T )  ->  ( P  .\/  V )  =  ( P  .\/  ( G `  P )
) )
231, 2, 4, 22syl3anc 1230 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( P  .\/  V )  =  ( P  .\/  ( G `  P )
) )
24 simp33 1035 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( F `  ( G `  P ) )  =  P )
2524oveq2d 6293 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  (
( G `  P
)  .\/  ( F `  ( G `  P
) ) )  =  ( ( G `  P )  .\/  P
) )
2621, 23, 253eqtr4rd 2454 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  (
( G `  P
)  .\/  ( F `  ( G `  P
) ) )  =  ( P  .\/  V
) )
2726breq2d 4406 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  (
( G `  Q
)  .<_  ( ( G `
 P )  .\/  ( F `  ( G `
 P ) ) )  <->  ( G `  Q )  .<_  ( P 
.\/  V ) ) )
2814, 27mtbird 299 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  -.  ( G `  Q ) 
.<_  ( ( G `  P )  .\/  ( F `  ( G `  P ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   class class class wbr 4394   ` cfv 5568  (class class class)co 6277   lecple 14914   joincjn 15895   Atomscatm 32261   HLchlt 32348   LHypclh 32981   LTrncltrn 33098   trLctrl 33156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6783  df-2nd 6784  df-map 7458  df-preset 15879  df-poset 15897  df-plt 15910  df-lub 15926  df-glb 15927  df-join 15928  df-meet 15929  df-p0 15991  df-p1 15992  df-lat 15998  df-clat 16060  df-oposet 32174  df-ol 32176  df-oml 32177  df-covers 32264  df-ats 32265  df-atl 32296  df-cvlat 32320  df-hlat 32349  df-psubsp 32500  df-pmap 32501  df-padd 32793  df-lhyp 32985  df-laut 32986  df-ldil 33101  df-ltrn 33102  df-trl 33157
This theorem is referenced by:  cdlemg4e  33613
  Copyright terms: Public domain W3C validator