Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg4c Structured version   Unicode version

Theorem cdlemg4c 35408
Description: TODO: FIX COMMENT (Contributed by NM, 24-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l  |-  .<_  =  ( le `  K )
cdlemg4.a  |-  A  =  ( Atoms `  K )
cdlemg4.h  |-  H  =  ( LHyp `  K
)
cdlemg4.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg4.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg4.j  |-  .\/  =  ( join `  K )
cdlemg4b.v  |-  V  =  ( R `  G
)
Assertion
Ref Expression
cdlemg4c  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
)  /\  -.  Q  .<_  ( P  .\/  V
) )  ->  -.  ( G `  Q ) 
.<_  ( P  .\/  V
) )

Proof of Theorem cdlemg4c
StepHypRef Expression
1 simpll 753 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simplr2 1039 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
3 simplr3 1040 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  G  e.  T )
4 cdlemg4.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
5 cdlemg4.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
6 cdlemg4.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
7 cdlemg4.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemg4.r . . . . . . . . 9  |-  R  =  ( ( trL `  K
) `  W )
9 cdlemg4.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
10 cdlemg4b.v . . . . . . . . 9  |-  V  =  ( R `  G
)
114, 5, 6, 7, 8, 9, 10cdlemg4b2 35406 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T )  ->  (
( G `  Q
)  .\/  V )  =  ( Q  .\/  ( G `  Q ) ) )
121, 2, 3, 11syl3anc 1228 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  (
( G `  Q
)  .\/  V )  =  ( Q  .\/  ( G `  Q ) ) )
13 simpr 461 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  ( G `  Q )  .<_  ( P  .\/  V
) )
14 simpll 753 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  K  e.  HL )
15 hllat 34160 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Lat )
1614, 15syl 16 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  K  e.  Lat )
17 simpr1l 1053 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  P  e.  A )
18 eqid 2467 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
1918, 5atbase 34086 . . . . . . . . . . 11  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2017, 19syl 16 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  P  e.  ( Base `  K
) )
21 simpl 457 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
22 simpr3 1004 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  G  e.  T )
2318, 6, 7, 8trlcl 34960 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
2421, 22, 23syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  ( R `  G )  e.  ( Base `  K
) )
2510, 24syl5eqel 2559 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  V  e.  ( Base `  K
) )
2618, 4, 9latlej2 15541 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  V  e.  ( Base `  K
) )  ->  V  .<_  ( P  .\/  V
) )
2716, 20, 25, 26syl3anc 1228 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  V  .<_  ( P  .\/  V
) )
2827adantr 465 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  V  .<_  ( P  .\/  V
) )
29 simpr2l 1055 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  Q  e.  A )
3018, 5atbase 34086 . . . . . . . . . . . 12  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
3129, 30syl 16 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  Q  e.  ( Base `  K
) )
3218, 6, 7ltrncl 34921 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  Q  e.  ( Base `  K ) )  ->  ( G `  Q )  e.  (
Base `  K )
)
3321, 22, 31, 32syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  ( G `  Q )  e.  ( Base `  K
) )
3418, 9latjcl 15531 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  V  e.  ( Base `  K
) )  ->  ( P  .\/  V )  e.  ( Base `  K
) )
3516, 20, 25, 34syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  ( P  .\/  V )  e.  ( Base `  K
) )
3618, 4, 9latjle12 15542 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( ( G `  Q )  e.  (
Base `  K )  /\  V  e.  ( Base `  K )  /\  ( P  .\/  V )  e.  ( Base `  K
) ) )  -> 
( ( ( G `
 Q )  .<_  ( P  .\/  V )  /\  V  .<_  ( P 
.\/  V ) )  <-> 
( ( G `  Q )  .\/  V
)  .<_  ( P  .\/  V ) ) )
3716, 33, 25, 35, 36syl13anc 1230 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  (
( ( G `  Q )  .<_  ( P 
.\/  V )  /\  V  .<_  ( P  .\/  V ) )  <->  ( ( G `  Q )  .\/  V )  .<_  ( P 
.\/  V ) ) )
3837adantr 465 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  (
( ( G `  Q )  .<_  ( P 
.\/  V )  /\  V  .<_  ( P  .\/  V ) )  <->  ( ( G `  Q )  .\/  V )  .<_  ( P 
.\/  V ) ) )
3913, 28, 38mpbi2and 919 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  (
( G `  Q
)  .\/  V )  .<_  ( P  .\/  V
) )
4012, 39eqbrtrrd 4469 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  ( Q  .\/  ( G `  Q ) )  .<_  ( P  .\/  V ) )
4116adantr 465 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  K  e.  Lat )
4231adantr 465 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  Q  e.  ( Base `  K
) )
4333adantr 465 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  ( G `  Q )  e.  ( Base `  K
) )
4420adantr 465 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  P  e.  ( Base `  K
) )
451, 3, 23syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  ( R `  G )  e.  ( Base `  K
) )
4610, 45syl5eqel 2559 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  V  e.  ( Base `  K
) )
4741, 44, 46, 34syl3anc 1228 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  ( P  .\/  V )  e.  ( Base `  K
) )
4818, 4, 9latjle12 15542 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  ( G `  Q )  e.  ( Base `  K
)  /\  ( P  .\/  V )  e.  (
Base `  K )
) )  ->  (
( Q  .<_  ( P 
.\/  V )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  <->  ( Q  .\/  ( G `  Q
) )  .<_  ( P 
.\/  V ) ) )
4941, 42, 43, 47, 48syl13anc 1230 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  (
( Q  .<_  ( P 
.\/  V )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  <->  ( Q  .\/  ( G `  Q
) )  .<_  ( P 
.\/  V ) ) )
5040, 49mpbird 232 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  ( Q  .<_  ( P  .\/  V )  /\  ( G `
 Q )  .<_  ( P  .\/  V ) ) )
5150simpld 459 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T ) )  /\  ( G `  Q ) 
.<_  ( P  .\/  V
) )  ->  Q  .<_  ( P  .\/  V
) )
5251ex 434 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  (
( G `  Q
)  .<_  ( P  .\/  V )  ->  Q  .<_  ( P  .\/  V ) ) )
5352con3d 133 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
) )  ->  ( -.  Q  .<_  ( P 
.\/  V )  ->  -.  ( G `  Q
)  .<_  ( P  .\/  V ) ) )
54533impia 1193 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T
)  /\  -.  Q  .<_  ( P  .\/  V
) )  ->  -.  ( G `  Q ) 
.<_  ( P  .\/  V
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   Basecbs 14483   lecple 14555   joincjn 15424   Latclat 15525   Atomscatm 34060   HLchlt 34147   LHypclh 34780   LTrncltrn 34897   trLctrl 34954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-map 7419  df-poset 15426  df-plt 15438  df-lub 15454  df-glb 15455  df-join 15456  df-meet 15457  df-p0 15519  df-p1 15520  df-lat 15526  df-clat 15588  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-psubsp 34299  df-pmap 34300  df-padd 34592  df-lhyp 34784  df-laut 34785  df-ldil 34900  df-ltrn 34901  df-trl 34955
This theorem is referenced by:  cdlemg4d  35409
  Copyright terms: Public domain W3C validator