Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg46 Structured version   Unicode version

Theorem cdlemg46 33767
Description: Part of proof of Lemma G of [Crawley] p. 116, seventh line of third paragraph on p. 117: "hf and f have different traces." (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b  |-  B  =  ( Base `  K
)
cdlemg46.h  |-  H  =  ( LHyp `  K
)
cdlemg46.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg46.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg46  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( h  o.  F
) )  =/=  ( R `  F )
)
Distinct variable groups:    h, F    h, H    h, K    R, h    T, h    h, W
Allowed substitution hint:    B( h)

Proof of Theorem cdlemg46
StepHypRef Expression
1 simpl1l 1050 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  K  e.  HL )
2 simp1 999 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp2r 1026 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  h  e.  T
)
4 simp32 1036 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  h  =/=  (  _I  |`  B ) )
5 cdlemg46.b . . . . . 6  |-  B  =  ( Base `  K
)
6 eqid 2404 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
7 cdlemg46.h . . . . . 6  |-  H  =  ( LHyp `  K
)
8 cdlemg46.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
9 cdlemg46.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
105, 6, 7, 8, 9trlnidat 33204 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  ( R `  h )  e.  (
Atoms `  K ) )
112, 3, 4, 10syl3anc 1232 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  h )  e.  (
Atoms `  K ) )
1211adantr 465 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  h )  e.  (
Atoms `  K ) )
13 simp2l 1025 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  F  e.  T
)
14 simp31 1035 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  F  =/=  (  _I  |`  B ) )
155, 6, 7, 8, 9trlnidat 33204 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  (
Atoms `  K ) )
162, 13, 14, 15syl3anc 1232 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  F )  e.  (
Atoms `  K ) )
1716adantr 465 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  F )  e.  (
Atoms `  K ) )
18 simpl33 1082 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  h )  =/=  ( R `  F )
)
19 simpr 461 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  ( h  o.  F
) )  e.  (
Atoms `  K ) )
207, 8ltrnco 33751 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  F  e.  T
)  ->  ( h  o.  F )  e.  T
)
212, 3, 13, 20syl3anc 1232 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( h  o.  F )  e.  T
)
227, 8ltrncnv 33176 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
232, 13, 22syl2anc 661 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  `' F  e.  T )
24 eqid 2404 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
25 eqid 2404 . . . . . . . 8  |-  ( join `  K )  =  (
join `  K )
2624, 25, 7, 8, 9trlco 33759 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  o.  F )  e.  T  /\  `' F  e.  T
)  ->  ( R `  ( ( h  o.  F )  o.  `' F ) ) ( le `  K ) ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 `' F ) ) )
272, 21, 23, 26syl3anc 1232 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( ( h  o.  F )  o.  `' F ) ) ( le `  K ) ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 `' F ) ) )
28 coass 5344 . . . . . . . 8  |-  ( ( h  o.  F )  o.  `' F )  =  ( h  o.  ( F  o.  `' F ) )
295, 7, 8ltrn1o 33154 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
302, 13, 29syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  F : B -1-1-onto-> B
)
31 f1ococnv2 5827 . . . . . . . . . . 11  |-  ( F : B -1-1-onto-> B  ->  ( F  o.  `' F )  =  (  _I  |`  B )
)
3230, 31syl 17 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( F  o.  `' F )  =  (  _I  |`  B )
)
3332coeq2d 4988 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( h  o.  ( F  o.  `' F ) )  =  ( h  o.  (  _I  |`  B ) ) )
345, 7, 8ltrn1o 33154 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T
)  ->  h : B
-1-1-onto-> B )
352, 3, 34syl2anc 661 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  h : B -1-1-onto-> B
)
36 f1of 5801 . . . . . . . . . 10  |-  ( h : B -1-1-onto-> B  ->  h : B
--> B )
37 fcoi1 5744 . . . . . . . . . 10  |-  ( h : B --> B  -> 
( h  o.  (  _I  |`  B ) )  =  h )
3835, 36, 373syl 18 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( h  o.  (  _I  |`  B ) )  =  h )
3933, 38eqtrd 2445 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( h  o.  ( F  o.  `' F ) )  =  h )
4028, 39syl5eq 2457 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( ( h  o.  F )  o.  `' F )  =  h )
4140fveq2d 5855 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( ( h  o.  F )  o.  `' F ) )  =  ( R `  h
) )
427, 8, 9trlcnv 33196 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )
432, 13, 42syl2anc 661 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  `' F )  =  ( R `  F ) )
4443oveq2d 6296 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  `' F ) )  =  ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 F ) ) )
4527, 41, 443brtr3d 4426 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  h ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
4645adantr 465 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  h ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
4724, 25, 6hlatlej2 32406 . . . . 5  |-  ( ( K  e.  HL  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
)  /\  ( R `  F )  e.  (
Atoms `  K ) )  ->  ( R `  F ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
481, 19, 17, 47syl3anc 1232 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  F ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
49 hllat 32394 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
501, 49syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  K  e.  Lat )
515, 6atbase 32320 . . . . . 6  |-  ( ( R `  h )  e.  ( Atoms `  K
)  ->  ( R `  h )  e.  B
)
5212, 51syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  h )  e.  B
)
535, 6atbase 32320 . . . . . 6  |-  ( ( R `  F )  e.  ( Atoms `  K
)  ->  ( R `  F )  e.  B
)
5417, 53syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  F )  e.  B
)
555, 25, 6hlatjcl 32397 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
)  /\  ( R `  F )  e.  (
Atoms `  K ) )  ->  ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  F
) )  e.  B
)
561, 19, 17, 55syl3anc 1232 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( ( R `  ( h  o.  F ) ) (
join `  K )
( R `  F
) )  e.  B
)
575, 24, 25latjle12 16018 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( R `  h )  e.  B  /\  ( R `  F
)  e.  B  /\  ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 F ) )  e.  B ) )  ->  ( ( ( R `  h ) ( le `  K
) ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  F
) )  /\  ( R `  F )
( le `  K
) ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  F
) ) )  <->  ( ( R `  h )
( join `  K )
( R `  F
) ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) ) )
5850, 52, 54, 56, 57syl13anc 1234 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( (
( R `  h
) ( le `  K ) ( ( R `  ( h  o.  F ) ) ( join `  K
) ( R `  F ) )  /\  ( R `  F ) ( le `  K
) ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  F
) ) )  <->  ( ( R `  h )
( join `  K )
( R `  F
) ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) ) )
5946, 48, 58mpbi2and 924 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( ( R `  h )
( join `  K )
( R `  F
) ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
6024, 25, 62atjlej 32509 . . 3  |-  ( ( K  e.  HL  /\  ( ( R `  h )  e.  (
Atoms `  K )  /\  ( R `  F )  e.  ( Atoms `  K
)  /\  ( R `  h )  =/=  ( R `  F )
)  /\  ( ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )  /\  ( R `  F
)  e.  ( Atoms `  K )  /\  (
( R `  h
) ( join `  K
) ( R `  F ) ) ( le `  K ) ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 F ) ) ) )  ->  ( R `  ( h  o.  F ) )  =/=  ( R `  F
) )
611, 12, 17, 18, 19, 17, 59, 60syl133anc 1255 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  ( h  o.  F
) )  =/=  ( R `  F )
)
62 nelne2 2735 . . . 4  |-  ( ( ( R `  F
)  e.  ( Atoms `  K )  /\  -.  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
) )  ->  ( R `  F )  =/=  ( R `  (
h  o.  F ) ) )
6362necomd 2676 . . 3  |-  ( ( ( R `  F
)  e.  ( Atoms `  K )  /\  -.  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
) )  ->  ( R `  ( h  o.  F ) )  =/=  ( R `  F
) )
6416, 63sylan 471 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  -.  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
) )  ->  ( R `  ( h  o.  F ) )  =/=  ( R `  F
) )
6561, 64pm2.61dan 794 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( h  o.  F
) )  =/=  ( R `  F )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 186    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844    =/= wne 2600   class class class wbr 4397    _I cid 4735   `'ccnv 4824    |` cres 4827    o. ccom 4829   -->wf 5567   -1-1-onto->wf1o 5570   ` cfv 5571  (class class class)co 6280   Basecbs 14843   lecple 14918   joincjn 15899   Latclat 16001   Atomscatm 32294   HLchlt 32381   LHypclh 33014   LTrncltrn 33131   trLctrl 33189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-riotaBAD 31990
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-iun 4275  df-iin 4276  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-1st 6786  df-2nd 6787  df-undef 7007  df-map 7461  df-preset 15883  df-poset 15901  df-plt 15914  df-lub 15930  df-glb 15931  df-join 15932  df-meet 15933  df-p0 15995  df-p1 15996  df-lat 16002  df-clat 16064  df-oposet 32207  df-ol 32209  df-oml 32210  df-covers 32297  df-ats 32298  df-atl 32329  df-cvlat 32353  df-hlat 32382  df-llines 32528  df-lplanes 32529  df-lvols 32530  df-lines 32531  df-psubsp 32533  df-pmap 32534  df-padd 32826  df-lhyp 33018  df-laut 33019  df-ldil 33134  df-ltrn 33135  df-trl 33190
This theorem is referenced by:  cdlemg47  33768
  Copyright terms: Public domain W3C validator