Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg44b Structured version   Unicode version

Theorem cdlemg44b 34472
Description: Eliminate  ( F `
 P )  =/= 
P,  ( G `  P )  =/=  P from cdlemg44a 34471. (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg44.h  |-  H  =  ( LHyp `  K
)
cdlemg44.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg44.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg44.l  |-  .<_  =  ( le `  K )
cdlemg44.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdlemg44b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `  F )  =/=  ( R `  G )
)  ->  ( F `  ( G `  P
) )  =  ( G `  ( F `
 P ) ) )

Proof of Theorem cdlemg44b
StepHypRef Expression
1 simpl1 991 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simpl21 1066 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  F  e.  T )
3 simpl23 1068 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simpl22 1067 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  G  e.  T )
5 cdlemg44.l . . . . . 6  |-  .<_  =  ( le `  K )
6 cdlemg44.a . . . . . 6  |-  A  =  ( Atoms `  K )
7 cdlemg44.h . . . . . 6  |-  H  =  ( LHyp `  K
)
8 cdlemg44.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
95, 6, 7, 8ltrnel 33879 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
101, 4, 3, 9syl3anc 1218 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  (
( G `  P
)  e.  A  /\  -.  ( G `  P
)  .<_  W ) )
11 simpr 461 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( F `  P )  =  P )
125, 6, 7, 8ltrnateq 33921 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( F `  ( G `  P ) )  =  ( G `  P
) )
131, 2, 3, 10, 11, 12syl131anc 1231 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( F `  ( G `  P ) )  =  ( G `  P
) )
1411fveq2d 5716 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( G `  ( F `  P ) )  =  ( G `  P
) )
1513, 14eqtr4d 2478 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( F `  ( G `  P ) )  =  ( G `  ( F `  P )
) )
16 simpr 461 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( G `  P )  =  P )
1716fveq2d 5716 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( F `  ( G `  P ) )  =  ( F `  P
) )
18 simpl1 991 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( K  e.  HL  /\  W  e.  H ) )
19 simpl22 1067 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  G  e.  T )
20 simpl23 1068 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
21 simpl21 1066 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  F  e.  T )
225, 6, 7, 8ltrnel 33879 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
2318, 21, 20, 22syl3anc 1218 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  (
( F `  P
)  e.  A  /\  -.  ( F `  P
)  .<_  W ) )
245, 6, 7, 8ltrnateq 33921 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  /\  ( G `
 P )  =  P )  ->  ( G `  ( F `  P ) )  =  ( F `  P
) )
2518, 19, 20, 23, 16, 24syl131anc 1231 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( G `  ( F `  P ) )  =  ( F `  P
) )
2617, 25eqtr4d 2478 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( F `  ( G `  P ) )  =  ( G `  ( F `  P )
) )
27 simpl1 991 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
28 simpl2 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )
29 simprl 755 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( F `  P )  =/=  P
)
30 simprr 756 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( G `  P )  =/=  P
)
31 simpl3 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( R `  F )  =/=  ( R `  G )
)
32 cdlemg44.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
337, 8, 32, 5, 6cdlemg44a 34471 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( F `  ( G `  P
) )  =  ( G `  ( F `
 P ) ) )
3427, 28, 29, 30, 31, 33syl113anc 1230 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( F `  ( G `  P ) )  =  ( G `
 ( F `  P ) ) )
3515, 26, 34pm2.61da2ne 2714 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `  F )  =/=  ( R `  G )
)  ->  ( F `  ( G `  P
) )  =  ( G `  ( F `
 P ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2620   class class class wbr 4313   ` cfv 5439   lecple 14266   Atomscatm 33004   HLchlt 33091   LHypclh 33724   LTrncltrn 33841   trLctrl 33898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-1st 6598  df-2nd 6599  df-map 7237  df-poset 15137  df-plt 15149  df-lub 15165  df-glb 15166  df-join 15167  df-meet 15168  df-p0 15230  df-p1 15231  df-lat 15237  df-clat 15299  df-oposet 32917  df-ol 32919  df-oml 32920  df-covers 33007  df-ats 33008  df-atl 33039  df-cvlat 33063  df-hlat 33092  df-llines 33238  df-psubsp 33243  df-pmap 33244  df-padd 33536  df-lhyp 33728  df-laut 33729  df-ldil 33844  df-ltrn 33845  df-trl 33899
This theorem is referenced by:  cdlemg44  34473
  Copyright terms: Public domain W3C validator