Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg44a Structured version   Unicode version

Theorem cdlemg44a 34007
Description: Part of proof of Lemma G of [Crawley] p. 116, fourth line of third paragraph on p. 117: "so fg(p) = gf(p)." (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg44.h  |-  H  =  ( LHyp `  K
)
cdlemg44.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg44.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg44.l  |-  .<_  =  ( le `  K )
cdlemg44.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdlemg44a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( F `  ( G `  P
) )  =  ( G `  ( F `
 P ) ) )

Proof of Theorem cdlemg44a
StepHypRef Expression
1 simp1l 1029 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  K  e.  HL )
2 hllat 32638 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  K  e.  Lat )
4 simp1 1005 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simp22 1039 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  G  e.  T )
6 simp23l 1126 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  P  e.  A )
7 eqid 2429 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
8 cdlemg44.a . . . . . . 7  |-  A  =  ( Atoms `  K )
97, 8atbase 32564 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
106, 9syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  P  e.  ( Base `  K )
)
11 cdlemg44.h . . . . . 6  |-  H  =  ( LHyp `  K
)
12 cdlemg44.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
137, 11, 12ltrncl 33399 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( G `  P )  e.  (
Base `  K )
)
144, 5, 10, 13syl3anc 1264 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( G `  P )  e.  (
Base `  K )
)
15 simp21 1038 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  F  e.  T )
16 cdlemg44.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
177, 11, 12, 16trlcl 33439 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
184, 15, 17syl2anc 665 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( R `  F )  e.  (
Base `  K )
)
19 eqid 2429 . . . . 5  |-  ( join `  K )  =  (
join `  K )
207, 19latjcl 16248 . . . 4  |-  ( ( K  e.  Lat  /\  ( G `  P )  e.  ( Base `  K
)  /\  ( R `  F )  e.  (
Base `  K )
)  ->  ( ( G `  P )
( join `  K )
( R `  F
) )  e.  (
Base `  K )
)
213, 14, 18, 20syl3anc 1264 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( ( G `  P )
( join `  K )
( R `  F
) )  e.  (
Base `  K )
)
227, 11, 12ltrncl 33399 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( F `  P )  e.  (
Base `  K )
)
234, 15, 10, 22syl3anc 1264 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( F `  P )  e.  (
Base `  K )
)
247, 11, 12, 16trlcl 33439 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
254, 5, 24syl2anc 665 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( R `  G )  e.  (
Base `  K )
)
267, 19latjcl 16248 . . . 4  |-  ( ( K  e.  Lat  /\  ( F `  P )  e.  ( Base `  K
)  /\  ( R `  G )  e.  (
Base `  K )
)  ->  ( ( F `  P )
( join `  K )
( R `  G
) )  e.  (
Base `  K )
)
273, 23, 25, 26syl3anc 1264 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( ( F `  P )
( join `  K )
( R `  G
) )  e.  (
Base `  K )
)
28 eqid 2429 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
297, 28latmcom 16272 . . 3  |-  ( ( K  e.  Lat  /\  ( ( G `  P ) ( join `  K ) ( R `
 F ) )  e.  ( Base `  K
)  /\  ( ( F `  P )
( join `  K )
( R `  G
) )  e.  (
Base `  K )
)  ->  ( (
( G `  P
) ( join `  K
) ( R `  F ) ) (
meet `  K )
( ( F `  P ) ( join `  K ) ( R `
 G ) ) )  =  ( ( ( F `  P
) ( join `  K
) ( R `  G ) ) (
meet `  K )
( ( G `  P ) ( join `  K ) ( R `
 F ) ) ) )
303, 21, 27, 29syl3anc 1264 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( (
( G `  P
) ( join `  K
) ( R `  F ) ) (
meet `  K )
( ( F `  P ) ( join `  K ) ( R `
 G ) ) )  =  ( ( ( F `  P
) ( join `  K
) ( R `  G ) ) (
meet `  K )
( ( G `  P ) ( join `  K ) ( R `
 F ) ) ) )
31 simp23 1040 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
32 simp32 1042 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( G `  P )  =/=  P
)
33 simp33 1043 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( R `  F )  =/=  ( R `  G )
)
34 cdlemg44.l . . . 4  |-  .<_  =  ( le `  K )
3534, 19, 8, 11, 12, 16, 28cdlemg43 34006 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( F `  ( G `  P
) )  =  ( ( ( G `  P ) ( join `  K ) ( R `
 F ) ) ( meet `  K
) ( ( F `
 P ) (
join `  K )
( R `  G
) ) ) )
364, 15, 5, 31, 32, 33, 35syl123anc 1281 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( F `  ( G `  P
) )  =  ( ( ( G `  P ) ( join `  K ) ( R `
 F ) ) ( meet `  K
) ( ( F `
 P ) (
join `  K )
( R `  G
) ) ) )
37 simp31 1041 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( F `  P )  =/=  P
)
3833necomd 2702 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( R `  G )  =/=  ( R `  F )
)
3934, 19, 8, 11, 12, 16, 28cdlemg43 34006 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  F  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =/=  P  /\  ( R `  G
)  =/=  ( R `
 F ) ) )  ->  ( G `  ( F `  P
) )  =  ( ( ( F `  P ) ( join `  K ) ( R `
 G ) ) ( meet `  K
) ( ( G `
 P ) (
join `  K )
( R `  F
) ) ) )
404, 5, 15, 31, 37, 38, 39syl123anc 1281 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( G `  ( F `  P
) )  =  ( ( ( F `  P ) ( join `  K ) ( R `
 G ) ) ( meet `  K
) ( ( G `
 P ) (
join `  K )
( R `  F
) ) ) )
4130, 36, 403eqtr4d 2480 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( F `  ( G `  P
) )  =  ( G `  ( F `
 P ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   Basecbs 15084   lecple 15159   joincjn 16140   meetcmee 16141   Latclat 16242   Atomscatm 32538   HLchlt 32625   LHypclh 33258   LTrncltrn 33375   trLctrl 33433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-map 7482  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-p1 16237  df-lat 16243  df-clat 16305  df-oposet 32451  df-ol 32453  df-oml 32454  df-covers 32541  df-ats 32542  df-atl 32573  df-cvlat 32597  df-hlat 32626  df-llines 32772  df-psubsp 32777  df-pmap 32778  df-padd 33070  df-lhyp 33262  df-laut 33263  df-ldil 33378  df-ltrn 33379  df-trl 33434
This theorem is referenced by:  cdlemg44b  34008
  Copyright terms: Public domain W3C validator