Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg44 Structured version   Unicode version

Theorem cdlemg44 36602
Description: Part of proof of Lemma G of [Crawley] p. 116, fifth line of third paragraph on p. 117: "and hence fg = gf." (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg44.h  |-  H  =  ( LHyp `  K
)
cdlemg44.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg44.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg44  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( F  o.  G )  =  ( G  o.  F ) )

Proof of Theorem cdlemg44
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 eqid 2457 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
2 eqid 2457 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 cdlemg44.h . . . 4  |-  H  =  ( LHyp `  K
)
41, 2, 3lhpexnle 35873 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  (
Atoms `  K )  -.  p ( le `  K ) W )
543ad2ant1 1017 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  E. p  e.  ( Atoms `  K )  -.  p ( le `  K ) W )
6 simp11 1026 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simp12l 1109 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  F  e.  T
)
8 simp12r 1110 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  G  e.  T
)
9 cdlemg44.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
103, 9ltrnco 36588 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  e.  T
)
116, 7, 8, 10syl3anc 1228 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( F  o.  G )  e.  T
)
123, 9ltrnco 36588 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  F  e.  T
)  ->  ( G  o.  F )  e.  T
)
136, 8, 7, 12syl3anc 1228 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( G  o.  F )  e.  T
)
14 3simpc 995 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( p  e.  ( Atoms `  K )  /\  -.  p ( le
`  K ) W ) )
15 simp13 1028 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( R `  F )  =/=  ( R `  G )
)
16 cdlemg44.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
173, 9, 16, 1, 2cdlemg44b 36601 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( p  e.  ( Atoms `  K
)  /\  -.  p
( le `  K
) W ) )  /\  ( R `  F )  =/=  ( R `  G )
)  ->  ( F `  ( G `  p
) )  =  ( G `  ( F `
 p ) ) )
186, 7, 8, 14, 15, 17syl131anc 1241 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( F `  ( G `  p ) )  =  ( G `
 ( F `  p ) ) )
19 simp12 1027 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( F  e.  T  /\  G  e.  T ) )
20 simp2 997 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  p  e.  (
Atoms `  K ) )
211, 2, 3, 9ltrncoval 36012 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  p  e.  ( Atoms `  K )
)  ->  ( ( F  o.  G ) `  p )  =  ( F `  ( G `
 p ) ) )
226, 19, 20, 21syl3anc 1228 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( ( F  o.  G ) `  p )  =  ( F `  ( G `
 p ) ) )
231, 2, 3, 9ltrncoval 36012 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  F  e.  T )  /\  p  e.  ( Atoms `  K )
)  ->  ( ( G  o.  F ) `  p )  =  ( G `  ( F `
 p ) ) )
246, 8, 7, 20, 23syl121anc 1233 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( ( G  o.  F ) `  p )  =  ( G `  ( F `
 p ) ) )
2518, 22, 243eqtr4d 2508 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( ( F  o.  G ) `  p )  =  ( ( G  o.  F
) `  p )
)
261, 2, 3, 9cdlemd 36075 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  o.  G )  e.  T  /\  ( G  o.  F )  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p ( le `  K ) W )  /\  ( ( F  o.  G ) `  p )  =  ( ( G  o.  F
) `  p )
)  ->  ( F  o.  G )  =  ( G  o.  F ) )
276, 11, 13, 14, 25, 26syl311anc 1242 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( F  o.  G )  =  ( G  o.  F ) )
2827rexlimdv3a 2951 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( E. p  e.  ( Atoms `  K )  -.  p ( le `  K ) W  -> 
( F  o.  G
)  =  ( G  o.  F ) ) )
295, 28mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( F  o.  G )  =  ( G  o.  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   E.wrex 2808   class class class wbr 4456    o. ccom 5012   ` cfv 5594   lecple 14719   Atomscatm 35131   HLchlt 35218   LHypclh 35851   LTrncltrn 35968   trLctrl 36026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-riotaBAD 34827
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-undef 7020  df-map 7440  df-preset 15684  df-poset 15702  df-plt 15715  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-p0 15796  df-p1 15797  df-lat 15803  df-clat 15865  df-oposet 35044  df-ol 35046  df-oml 35047  df-covers 35134  df-ats 35135  df-atl 35166  df-cvlat 35190  df-hlat 35219  df-llines 35365  df-lplanes 35366  df-lvols 35367  df-lines 35368  df-psubsp 35370  df-pmap 35371  df-padd 35663  df-lhyp 35855  df-laut 35856  df-ldil 35971  df-ltrn 35972  df-trl 36027
This theorem is referenced by:  cdlemg47  36605  ltrncom  36607
  Copyright terms: Public domain W3C validator