Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg44 Structured version   Unicode version

Theorem cdlemg44 33716
Description: Part of proof of Lemma G of [Crawley] p. 116, fifth line of third paragraph on p. 117: "and hence fg = gf." (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg44.h  |-  H  =  ( LHyp `  K
)
cdlemg44.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg44.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg44  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( F  o.  G )  =  ( G  o.  F ) )

Proof of Theorem cdlemg44
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 eqid 2400 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
2 eqid 2400 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 cdlemg44.h . . . 4  |-  H  =  ( LHyp `  K
)
41, 2, 3lhpexnle 32987 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  (
Atoms `  K )  -.  p ( le `  K ) W )
543ad2ant1 1016 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  E. p  e.  ( Atoms `  K )  -.  p ( le `  K ) W )
6 simp11 1025 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simp12l 1108 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  F  e.  T
)
8 simp12r 1109 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  G  e.  T
)
9 cdlemg44.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
103, 9ltrnco 33702 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  e.  T
)
116, 7, 8, 10syl3anc 1228 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( F  o.  G )  e.  T
)
123, 9ltrnco 33702 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  F  e.  T
)  ->  ( G  o.  F )  e.  T
)
136, 8, 7, 12syl3anc 1228 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( G  o.  F )  e.  T
)
14 3simpc 994 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( p  e.  ( Atoms `  K )  /\  -.  p ( le
`  K ) W ) )
15 simp13 1027 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( R `  F )  =/=  ( R `  G )
)
16 cdlemg44.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
173, 9, 16, 1, 2cdlemg44b 33715 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( p  e.  ( Atoms `  K
)  /\  -.  p
( le `  K
) W ) )  /\  ( R `  F )  =/=  ( R `  G )
)  ->  ( F `  ( G `  p
) )  =  ( G `  ( F `
 p ) ) )
186, 7, 8, 14, 15, 17syl131anc 1241 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( F `  ( G `  p ) )  =  ( G `
 ( F `  p ) ) )
19 simp12 1026 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( F  e.  T  /\  G  e.  T ) )
20 simp2 996 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  p  e.  (
Atoms `  K ) )
211, 2, 3, 9ltrncoval 33126 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  p  e.  ( Atoms `  K )
)  ->  ( ( F  o.  G ) `  p )  =  ( F `  ( G `
 p ) ) )
226, 19, 20, 21syl3anc 1228 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( ( F  o.  G ) `  p )  =  ( F `  ( G `
 p ) ) )
231, 2, 3, 9ltrncoval 33126 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  F  e.  T )  /\  p  e.  ( Atoms `  K )
)  ->  ( ( G  o.  F ) `  p )  =  ( G `  ( F `
 p ) ) )
246, 8, 7, 20, 23syl121anc 1233 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( ( G  o.  F ) `  p )  =  ( G `  ( F `
 p ) ) )
2518, 22, 243eqtr4d 2451 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( ( F  o.  G ) `  p )  =  ( ( G  o.  F
) `  p )
)
261, 2, 3, 9cdlemd 33189 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  o.  G )  e.  T  /\  ( G  o.  F )  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p ( le `  K ) W )  /\  ( ( F  o.  G ) `  p )  =  ( ( G  o.  F
) `  p )
)  ->  ( F  o.  G )  =  ( G  o.  F ) )
276, 11, 13, 14, 25, 26syl311anc 1242 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( F  o.  G )  =  ( G  o.  F ) )
2827rexlimdv3a 2895 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( E. p  e.  ( Atoms `  K )  -.  p ( le `  K ) W  -> 
( F  o.  G
)  =  ( G  o.  F ) ) )
295, 28mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( F  o.  G )  =  ( G  o.  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 972    = wceq 1403    e. wcel 1840    =/= wne 2596   E.wrex 2752   class class class wbr 4392    o. ccom 4944   ` cfv 5523   lecple 14806   Atomscatm 32245   HLchlt 32332   LHypclh 32965   LTrncltrn 33082   trLctrl 33140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-riotaBAD 31941
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-reu 2758  df-rmo 2759  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-op 3976  df-uni 4189  df-iun 4270  df-iin 4271  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4735  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-riota 6194  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-1st 6736  df-2nd 6737  df-undef 6957  df-map 7377  df-preset 15771  df-poset 15789  df-plt 15802  df-lub 15818  df-glb 15819  df-join 15820  df-meet 15821  df-p0 15883  df-p1 15884  df-lat 15890  df-clat 15952  df-oposet 32158  df-ol 32160  df-oml 32161  df-covers 32248  df-ats 32249  df-atl 32280  df-cvlat 32304  df-hlat 32333  df-llines 32479  df-lplanes 32480  df-lvols 32481  df-lines 32482  df-psubsp 32484  df-pmap 32485  df-padd 32777  df-lhyp 32969  df-laut 32970  df-ldil 33085  df-ltrn 33086  df-trl 33141
This theorem is referenced by:  cdlemg47  33719  ltrncom  33721
  Copyright terms: Public domain W3C validator