Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg41 Structured version   Unicode version

Theorem cdlemg41 36146
Description: Convert cdlemg40 36145 to function composition. TODO: Fix comment. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
cdlemg35.l  |-  .<_  =  ( le `  K )
cdlemg35.j  |-  .\/  =  ( join `  K )
cdlemg35.m  |-  ./\  =  ( meet `  K )
cdlemg35.a  |-  A  =  ( Atoms `  K )
cdlemg35.h  |-  H  =  ( LHyp `  K
)
cdlemg35.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemg41  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( P  .\/  ( ( F  o.  G ) `  P
) )  ./\  W
)  =  ( ( Q  .\/  ( ( F  o.  G ) `
 Q ) ) 
./\  W ) )

Proof of Theorem cdlemg41
StepHypRef Expression
1 cdlemg35.l . . 3  |-  .<_  =  ( le `  K )
2 cdlemg35.j . . 3  |-  .\/  =  ( join `  K )
3 cdlemg35.m . . 3  |-  ./\  =  ( meet `  K )
4 cdlemg35.a . . 3  |-  A  =  ( Atoms `  K )
5 cdlemg35.h . . 3  |-  H  =  ( LHyp `  K
)
6 cdlemg35.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
71, 2, 3, 4, 5, 6cdlemg40 36145 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
8 simp1 995 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
9 simp3 997 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( F  e.  T  /\  G  e.  T
) )
10 simp2ll 1062 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  ->  P  e.  A )
111, 4, 5, 6ltrncoval 35571 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  (
( F  o.  G
) `  P )  =  ( F `  ( G `  P ) ) )
128, 9, 10, 11syl3anc 1227 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( F  o.  G ) `  P
)  =  ( F `
 ( G `  P ) ) )
1312oveq2d 6293 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( P  .\/  (
( F  o.  G
) `  P )
)  =  ( P 
.\/  ( F `  ( G `  P ) ) ) )
1413oveq1d 6292 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( P  .\/  ( ( F  o.  G ) `  P
) )  ./\  W
)  =  ( ( P  .\/  ( F `
 ( G `  P ) ) ) 
./\  W ) )
15 simp2rl 1064 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  ->  Q  e.  A )
161, 4, 5, 6ltrncoval 35571 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  Q  e.  A )  ->  (
( F  o.  G
) `  Q )  =  ( F `  ( G `  Q ) ) )
178, 9, 15, 16syl3anc 1227 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( F  o.  G ) `  Q
)  =  ( F `
 ( G `  Q ) ) )
1817oveq2d 6293 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( Q  .\/  (
( F  o.  G
) `  Q )
)  =  ( Q 
.\/  ( F `  ( G `  Q ) ) ) )
1918oveq1d 6292 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( Q  .\/  ( ( F  o.  G ) `  Q
) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
207, 14, 193eqtr4d 2492 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( P  .\/  ( ( F  o.  G ) `  P
) )  ./\  W
)  =  ( ( Q  .\/  ( ( F  o.  G ) `
 Q ) ) 
./\  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   class class class wbr 4433    o. ccom 4989   ` cfv 5574  (class class class)co 6277   lecple 14576   joincjn 15442   meetcmee 15443   Atomscatm 34690   HLchlt 34777   LHypclh 35410   LTrncltrn 35527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-riotaBAD 34386
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6781  df-2nd 6782  df-undef 7000  df-map 7420  df-preset 15426  df-poset 15444  df-plt 15457  df-lub 15473  df-glb 15474  df-join 15475  df-meet 15476  df-p0 15538  df-p1 15539  df-lat 15545  df-clat 15607  df-oposet 34603  df-ol 34605  df-oml 34606  df-covers 34693  df-ats 34694  df-atl 34725  df-cvlat 34749  df-hlat 34778  df-llines 34924  df-lplanes 34925  df-lvols 34926  df-lines 34927  df-psubsp 34929  df-pmap 34930  df-padd 35222  df-lhyp 35414  df-laut 35415  df-ldil 35530  df-ltrn 35531  df-trl 35586
This theorem is referenced by:  ltrnco  36147
  Copyright terms: Public domain W3C validator