Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg39 Structured version   Unicode version

Theorem cdlemg39 34663
Description: Eliminate  =/= conditions from cdlemg38 34662. TODO: Would this better be done at cdlemg35 34660? TODO: Fix comment. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
cdlemg35.l  |-  .<_  =  ( le `  K )
cdlemg35.j  |-  .\/  =  ( join `  K )
cdlemg35.m  |-  ./\  =  ( meet `  K )
cdlemg35.a  |-  A  =  ( Atoms `  K )
cdlemg35.h  |-  H  =  ( LHyp `  K
)
cdlemg35.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg35.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg39  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/= 
Q ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )

Proof of Theorem cdlemg39
StepHypRef Expression
1 simpl1 991 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpl2l 1041 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simpl2r 1042 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simpl31 1069 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =  ( R `  G ) )  ->  F  e.  T )
5 simpl32 1070 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =  ( R `  G ) )  ->  G  e.  T )
6 simpr 461 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( R `  F
)  =  ( R `
 G ) )
7 cdlemg35.l . . . 4  |-  .<_  =  ( le `  K )
8 cdlemg35.j . . . 4  |-  .\/  =  ( join `  K )
9 cdlemg35.m . . . 4  |-  ./\  =  ( meet `  K )
10 cdlemg35.a . . . 4  |-  A  =  ( Atoms `  K )
11 cdlemg35.h . . . 4  |-  H  =  ( LHyp `  K
)
12 cdlemg35.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
13 cdlemg35.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
147, 8, 9, 10, 11, 12, 13cdlemg15 34603 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
151, 2, 3, 4, 5, 6, 14syl321anc 1241 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
16 simpll1 1027 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( K  e.  HL  /\  W  e.  H ) )
17 simpll2 1028 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
18 simpl31 1069 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  F  e.  T )
1918adantr 465 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  F  e.  T )
20 simpl32 1070 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  G  e.  T )
2120adantr 465 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  G  e.  T )
22 simpr 461 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( F `  P )  =  P )
237, 8, 9, 10, 11, 12, 13cdlemg14f 34600 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
2416, 17, 19, 21, 22, 23syl113anc 1231 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  (
( P  .\/  ( F `  ( G `  P ) ) ) 
./\  W )  =  ( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  W )
)
25 simpll1 1027 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( K  e.  HL  /\  W  e.  H ) )
26 simpll2 1028 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2718adantr 465 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  F  e.  T )
2820adantr 465 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  G  e.  T )
29 simpr 461 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( G `  P )  =  P )
307, 8, 9, 10, 11, 12, 13cdlemg14g 34601 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
3125, 26, 27, 28, 29, 30syl113anc 1231 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  (
( P  .\/  ( F `  ( G `  P ) ) ) 
./\  W )  =  ( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  W )
)
32 simpll1 1027 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
33 simpl2l 1041 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3433adantr 465 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
35 simpl2r 1042 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
3635adantr 465 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
37 simpll3 1029 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( F  e.  T  /\  G  e.  T  /\  P  =/= 
Q ) )
38 simpr 461 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) )
39 simplr 754 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( R `  F )  =/=  ( R `  G )
)
407, 8, 9, 10, 11, 12, 13cdlemg38 34662 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
4132, 34, 36, 37, 38, 39, 40syl312anc 1240 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
4224, 31, 41pm2.61da2ne 2765 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  (
( P  .\/  ( F `  ( G `  P ) ) ) 
./\  W )  =  ( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  W )
)
4315, 42pm2.61dane 2764 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/= 
Q ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2642   class class class wbr 4387   ` cfv 5513  (class class class)co 6187   lecple 14344   joincjn 15213   meetcmee 15214   Atomscatm 33211   HLchlt 33298   LHypclh 33931   LTrncltrn 34048   trLctrl 34105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4498  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469  ax-riotaBAD 32907
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-nel 2645  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4187  df-iun 4268  df-iin 4269  df-br 4388  df-opab 4446  df-mpt 4447  df-id 4731  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6148  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-1st 6674  df-2nd 6675  df-undef 6889  df-map 7313  df-poset 15215  df-plt 15227  df-lub 15243  df-glb 15244  df-join 15245  df-meet 15246  df-p0 15308  df-p1 15309  df-lat 15315  df-clat 15377  df-oposet 33124  df-ol 33126  df-oml 33127  df-covers 33214  df-ats 33215  df-atl 33246  df-cvlat 33270  df-hlat 33299  df-llines 33445  df-lplanes 33446  df-lvols 33447  df-lines 33448  df-psubsp 33450  df-pmap 33451  df-padd 33743  df-lhyp 33935  df-laut 33936  df-ldil 34051  df-ltrn 34052  df-trl 34106
This theorem is referenced by:  cdlemg40  34664
  Copyright terms: Public domain W3C validator