Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg38 Structured version   Unicode version

Theorem cdlemg38 36542
Description: Use cdlemg37 36516 to eliminate  E. r  e.  A from cdlemg36 36541. TODO: Fix comment. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
cdlemg35.l  |-  .<_  =  ( le `  K )
cdlemg35.j  |-  .\/  =  ( join `  K )
cdlemg35.m  |-  ./\  =  ( meet `  K )
cdlemg35.a  |-  A  =  ( Atoms `  K )
cdlemg35.h  |-  H  =  ( LHyp `  K
)
cdlemg35.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg35.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg38  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )

Proof of Theorem cdlemg38
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 simpl1 999 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2 simpl2 1000 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )  -> 
( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )
3 simpl3l 1051 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )  -> 
( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P ) )
4 simpl3r 1052 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )  -> 
( R `  F
)  =/=  ( R `
 G ) )
5 simpr 461 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )
6 cdlemg35.l . . . 4  |-  .<_  =  ( le `  K )
7 cdlemg35.j . . . 4  |-  .\/  =  ( join `  K )
8 cdlemg35.m . . . 4  |-  ./\  =  ( meet `  K )
9 cdlemg35.a . . . 4  |-  A  =  ( Atoms `  K )
10 cdlemg35.h . . . 4  |-  H  =  ( LHyp `  K
)
11 cdlemg35.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
12 cdlemg35.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
136, 7, 8, 9, 10, 11, 12cdlemg36 36541 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
141, 2, 3, 4, 5, 13syl113anc 1240 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
15 simpl11 1071 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
16 simpl12 1072 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
17 simpl13 1073 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
18 simpl21 1074 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  ->  F  e.  T )
19 simpl22 1075 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  ->  G  e.  T )
20 simpl23 1076 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  ->  P  =/=  Q )
21 simpr 461 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  ->  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )
226, 7, 8, 9, 10, 11, 12cdlemg37 36516 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
2315, 16, 17, 18, 19, 20, 21, 22syl133anc 1251 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
2414, 23pm2.61dan 791 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   E.wrex 2808   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   lecple 14718   joincjn 15699   meetcmee 15700   Atomscatm 35089   HLchlt 35176   LHypclh 35809   LTrncltrn 35926   trLctrl 35984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-riotaBAD 34785
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-undef 7020  df-map 7440  df-preset 15683  df-poset 15701  df-plt 15714  df-lub 15730  df-glb 15731  df-join 15732  df-meet 15733  df-p0 15795  df-p1 15796  df-lat 15802  df-clat 15864  df-oposet 35002  df-ol 35004  df-oml 35005  df-covers 35092  df-ats 35093  df-atl 35124  df-cvlat 35148  df-hlat 35177  df-llines 35323  df-lplanes 35324  df-lvols 35325  df-lines 35326  df-psubsp 35328  df-pmap 35329  df-padd 35621  df-lhyp 35813  df-laut 35814  df-ldil 35929  df-ltrn 35930  df-trl 35985
This theorem is referenced by:  cdlemg39  36543
  Copyright terms: Public domain W3C validator