Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg38 Structured version   Unicode version

Theorem cdlemg38 34252
Description: Use cdlemg37 34226 to eliminate  E. r  e.  A from cdlemg36 34251. TODO: Fix comment. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
cdlemg35.l  |-  .<_  =  ( le `  K )
cdlemg35.j  |-  .\/  =  ( join `  K )
cdlemg35.m  |-  ./\  =  ( meet `  K )
cdlemg35.a  |-  A  =  ( Atoms `  K )
cdlemg35.h  |-  H  =  ( LHyp `  K
)
cdlemg35.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg35.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg38  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )

Proof of Theorem cdlemg38
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 simpl1 1008 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2 simpl2 1009 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )  -> 
( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
) )
3 simpl3l 1060 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )  -> 
( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P ) )
4 simpl3r 1061 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )  -> 
( R `  F
)  =/=  ( R `
 G ) )
5 simpr 462 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )
6 cdlemg35.l . . . 4  |-  .<_  =  ( le `  K )
7 cdlemg35.j . . . 4  |-  .\/  =  ( join `  K )
8 cdlemg35.m . . . 4  |-  ./\  =  ( meet `  K )
9 cdlemg35.a . . . 4  |-  A  =  ( Atoms `  K )
10 cdlemg35.h . . . 4  |-  H  =  ( LHyp `  K
)
11 cdlemg35.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
12 cdlemg35.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
136, 7, 8, 9, 10, 11, 12cdlemg36 34251 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
141, 2, 3, 4, 5, 13syl113anc 1276 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
15 simpl11 1080 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
16 simpl12 1081 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
17 simpl13 1082 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
18 simpl21 1083 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  ->  F  e.  T )
19 simpl22 1084 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  ->  G  e.  T )
20 simpl23 1085 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  ->  P  =/=  Q )
21 simpr 462 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  ->  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )
226, 7, 8, 9, 10, 11, 12cdlemg37 34226 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
2315, 16, 17, 18, 19, 20, 21, 22syl133anc 1287 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
2414, 23pm2.61dan 798 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614   E.wrex 2772   class class class wbr 4423   ` cfv 5601  (class class class)co 6306   lecple 15197   joincjn 16189   meetcmee 16190   Atomscatm 32799   HLchlt 32886   LHypclh 33519   LTrncltrn 33636   trLctrl 33694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6598  ax-riotaBAD 32495
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6268  df-ov 6309  df-oprab 6310  df-mpt2 6311  df-1st 6808  df-2nd 6809  df-undef 7032  df-map 7486  df-preset 16173  df-poset 16191  df-plt 16204  df-lub 16220  df-glb 16221  df-join 16222  df-meet 16223  df-p0 16285  df-p1 16286  df-lat 16292  df-clat 16354  df-oposet 32712  df-ol 32714  df-oml 32715  df-covers 32802  df-ats 32803  df-atl 32834  df-cvlat 32858  df-hlat 32887  df-llines 33033  df-lplanes 33034  df-lvols 33035  df-lines 33036  df-psubsp 33038  df-pmap 33039  df-padd 33331  df-lhyp 33523  df-laut 33524  df-ldil 33639  df-ltrn 33640  df-trl 33695
This theorem is referenced by:  cdlemg39  34253
  Copyright terms: Public domain W3C validator