Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg33e Structured version   Unicode version

Theorem cdlemg33e 35506
Description: TODO: Fix comment. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
cdlemg33.o  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
Assertion
Ref Expression
cdlemg33e  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) )
Distinct variable groups:    A, r    G, r    .\/ , r    .<_ , r    P, r    Q, r    W, r    F, r    z, A    z, F, r    H, r, z   
z,  .\/    K, r, z   
z,  .<_    N, r, z    z, P    z, Q    z, R    z, T    z, W    z,
v, r    z, G    z, O, r
Allowed substitution hints:    A( v)    P( v)    Q( v)    R( v, r)    T( v, r)    F( v)    G( v)    H( v)    .\/ ( v)    K( v)    .<_ ( v)    ./\ ( z,
v, r)    N( v)    O( v)    W( v)

Proof of Theorem cdlemg33e
StepHypRef Expression
1 simp1 996 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2 simp21 1029 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( v  e.  A  /\  v  .<_  W ) )
3 simp23l 1117 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  F  e.  T
)
4 simp3 998 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( P  =/= 
Q  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )
5 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
6 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
7 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
8 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
10 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
11 cdlemg12b.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
12 cdlemg31.n . . . 4  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
135, 6, 7, 8, 9, 10, 11, 12cdlemg33c0 35498 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  F  e.  T )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  z  .<_  ( P 
.\/  v ) ) )
141, 2, 3, 4, 13syl121anc 1233 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  z  .<_  ( P 
.\/  v ) ) )
15 simp11l 1107 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
16 hlatl 34157 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
1715, 16syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  AtLat )
18 eqid 2467 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
1918, 8atn0 34105 . . . . . . . . 9  |-  ( ( K  e.  AtLat  /\  z  e.  A )  ->  z  =/=  ( 0. `  K
) )
2017, 19sylan 471 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  z  =/=  ( 0. `  K ) )
21 simp22l 1115 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  N  =  ( 0. `  K ) )
2221adantr 465 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  N  =  ( 0. `  K ) )
2320, 22neeqtrrd 2767 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  z  =/=  N )
24 simp22r 1116 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  O  =  ( 0. `  K ) )
2524adantr 465 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  O  =  ( 0. `  K ) )
2620, 25neeqtrrd 2767 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  z  =/=  O )
2723, 26jca 532 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( z  =/=  N  /\  z  =/= 
O ) )
2827biantrurd 508 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( z  .<_  ( P  .\/  v
)  <->  ( ( z  =/=  N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v
) ) ) )
29 df-3an 975 . . . . 5  |-  ( ( z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( P  .\/  v
) )  <->  ( (
z  =/=  N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v ) ) )
3028, 29syl6bbr 263 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( z  .<_  ( P  .\/  v
)  <->  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) )
3130anbi2d 703 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( ( -.  z  .<_  W  /\  z  .<_  ( P  .\/  v ) )  <->  ( -.  z  .<_  W  /\  (
z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( P  .\/  v
) ) ) ) )
3231rexbidva 2970 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( E. z  e.  A  ( -.  z  .<_  W  /\  z  .<_  ( P  .\/  v
) )  <->  E. z  e.  A  ( -.  z  .<_  W  /\  (
z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( P  .\/  v
) ) ) ) )
3314, 32mpbid 210 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   lecple 14558   joincjn 15427   meetcmee 15428   0.cp0 15520   Atomscatm 34060   AtLatcal 34061   HLchlt 34147   LHypclh 34780   LTrncltrn 34897   trLctrl 34954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-p1 15523  df-lat 15529  df-clat 15591  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-llines 34294  df-lplanes 34295  df-lhyp 34784
This theorem is referenced by:  cdlemg33  35507
  Copyright terms: Public domain W3C validator