Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg33c Structured version   Unicode version

Theorem cdlemg33c 34352
Description: TODO: Fix comment. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
cdlemg33.o  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
Assertion
Ref Expression
cdlemg33c  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) )
Distinct variable groups:    A, r    G, r    .\/ , r    .<_ , r    P, r    Q, r    W, r    F, r    z, A    z, F, r    H, r, z   
z,  .\/    K, r, z   
z,  .<_    N, r, z    z, P    z, Q    z, R    z, T    z, W    z,
v, r    z, G    z, O, r
Allowed substitution hints:    A( v)    P( v)    Q( v)    R( v, r)    T( v, r)    F( v)    G( v)    H( v)    .\/ ( v)    K( v)    .<_ ( v)    ./\ ( z,
v, r)    N( v)    O( v)    W( v)

Proof of Theorem cdlemg33c
StepHypRef Expression
1 simp1 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2 simp21 1021 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( v  e.  A  /\  v  .<_  W ) )
3 simp22l 1107 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  N  e.  A
)
4 simp23l 1109 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  F  e.  T
)
5 simp3 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( P  =/= 
Q  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )
6 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
7 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
8 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
9 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
10 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
11 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
12 cdlemg12b.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
13 cdlemg31.n . . . 4  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
146, 7, 8, 9, 10, 11, 12, 13cdlemg33b0 34345 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  N  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  .<_  ( P  .\/  v ) ) ) )
151, 2, 3, 4, 5, 14syl131anc 1231 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  .<_  ( P  .\/  v ) ) ) )
16 simp11l 1099 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
1716adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  K  e.  HL )
18 hlatl 33005 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
1917, 18syl 16 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  K  e.  AtLat
)
20 eqid 2443 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
2120, 9atn0 32953 . . . . . . . . 9  |-  ( ( K  e.  AtLat  /\  z  e.  A )  ->  z  =/=  ( 0. `  K
) )
2219, 21sylancom 667 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  z  =/=  ( 0. `  K ) )
23 simp22r 1108 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  O  =  ( 0. `  K ) )
2423adantr 465 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  O  =  ( 0. `  K ) )
2522, 24neeqtrrd 2632 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  z  =/=  O )
2625biantrud 507 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( z  =/=  N  <->  ( z  =/= 
N  /\  z  =/=  O ) ) )
2726anbi1d 704 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( (
z  =/=  N  /\  z  .<_  ( P  .\/  v ) )  <->  ( (
z  =/=  N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v ) ) ) )
28 df-3an 967 . . . . 5  |-  ( ( z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( P  .\/  v
) )  <->  ( (
z  =/=  N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v ) ) )
2927, 28syl6bbr 263 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( (
z  =/=  N  /\  z  .<_  ( P  .\/  v ) )  <->  ( z  =/=  N  /\  z  =/= 
O  /\  z  .<_  ( P  .\/  v ) ) ) )
3029anbi2d 703 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( ( -.  z  .<_  W  /\  ( z  =/=  N  /\  z  .<_  ( P 
.\/  v ) ) )  <->  ( -.  z  .<_  W  /\  ( z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( P  .\/  v ) ) ) ) )
3130rexbidva 2732 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( E. z  e.  A  ( -.  z  .<_  W  /\  (
z  =/=  N  /\  z  .<_  ( P  .\/  v ) ) )  <->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) ) )
3215, 31mpbid 210 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  =  ( 0. `  K ) )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  F
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   E.wrex 2716   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   lecple 14245   joincjn 15114   meetcmee 15115   0.cp0 15207   Atomscatm 32908   AtLatcal 32909   HLchlt 32995   LHypclh 33628   LTrncltrn 33745   trLctrl 33802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1st 6577  df-2nd 6578  df-map 7216  df-poset 15116  df-plt 15128  df-lub 15144  df-glb 15145  df-join 15146  df-meet 15147  df-p0 15209  df-p1 15210  df-lat 15216  df-clat 15278  df-oposet 32821  df-ol 32823  df-oml 32824  df-covers 32911  df-ats 32912  df-atl 32943  df-cvlat 32967  df-hlat 32996  df-llines 33142  df-lplanes 33143  df-psubsp 33147  df-pmap 33148  df-padd 33440  df-lhyp 33632  df-laut 33633  df-ldil 33748  df-ltrn 33749  df-trl 33803
This theorem is referenced by:  cdlemg33d  34353  cdlemg33  34355
  Copyright terms: Public domain W3C validator