Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg33a Structured version   Unicode version

Theorem cdlemg33a 34072
Description: TODO: Fix comment. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
cdlemg33.o  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
Assertion
Ref Expression
cdlemg33a  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) )
Distinct variable groups:    A, r    G, r    .\/ , r    .<_ , r    P, r    Q, r    W, r    F, r    z, A    z, F, r    H, r, z   
z,  .\/    K, r, z   
z,  .<_    N, r, z    z, P    z, Q    z, R    z, T    z, W    z,
v, r    z, G    z, O, r
Allowed substitution hints:    A( v)    P( v)    Q( v)    R( v, r)    T( v, r)    F( v)    G( v)    H( v)    .\/ ( v)    K( v)    .<_ ( v)    ./\ ( z,
v, r)    N( v)    O( v)    W( v)

Proof of Theorem cdlemg33a
StepHypRef Expression
1 simp11 1013 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 1014 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 1015 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp22l 1102 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  N  e.  A
)
5 simp21 1016 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( v  e.  A  /\  v  .<_  W ) )
6 simp23l 1104 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  F  e.  T
)
7 simp32 1020 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  v  =/=  ( R `  F )
)
8 cdlemg12.l . . . . . 6  |-  .<_  =  ( le `  K )
9 cdlemg12.j . . . . . 6  |-  .\/  =  ( join `  K )
10 cdlemg12.m . . . . . 6  |-  ./\  =  ( meet `  K )
11 cdlemg12.a . . . . . 6  |-  A  =  ( Atoms `  K )
12 cdlemg12.h . . . . . 6  |-  H  =  ( LHyp `  K
)
13 cdlemg12.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
14 cdlemg12b.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
15 cdlemg31.n . . . . . 6  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
168, 9, 10, 11, 12, 13, 14, 15cdlemg31d 34066 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )  /\  N  e.  A
) )  ->  -.  N  .<_  W )
171, 2, 3, 5, 6, 7, 4, 16syl133anc 1236 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  N  .<_  W )
184, 17jca 529 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( N  e.  A  /\  -.  N  .<_  W ) )
19 simp31l 1106 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  =/=  Q
)
20 simp22r 1103 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  O  e.  A
)
21 simp31r 1107 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  N  =/=  O
)
2220, 21jca 529 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( O  e.  A  /\  N  =/= 
O ) )
23 simp33 1021 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )
248, 9, 11, 124atex3 33447 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( N  e.  A  /\  -.  N  .<_  W ) )  /\  ( P  =/=  Q  /\  ( O  e.  A  /\  N  =/=  O
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( N 
.\/  O ) ) ) )
251, 2, 3, 18, 19, 22, 23, 24syl133anc 1236 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( N 
.\/  O ) ) ) )
26 idd 24 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( z  =/=  N  ->  z  =/=  N ) )
27 idd 24 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( z  =/=  O  ->  z  =/=  O ) )
28 simp12l 1096 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  e.  A
)
29 simp13l 1098 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  Q  e.  A
)
30 simp21l 1100 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  v  e.  A
)
318, 9, 10, 11, 12, 13, 14, 15cdlemg31a 34063 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  (
v  e.  A  /\  F  e.  T )
)  ->  N  .<_  ( P  .\/  v ) )
321, 28, 29, 30, 6, 31syl122anc 1222 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  N  .<_  ( P 
.\/  v ) )
33 simp23r 1105 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  G  e.  T
)
34 cdlemg33.o . . . . . . . . . . 11  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
358, 9, 10, 11, 12, 13, 14, 34cdlemg31a 34063 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  (
v  e.  A  /\  G  e.  T )
)  ->  O  .<_  ( P  .\/  v ) )
361, 28, 29, 30, 33, 35syl122anc 1222 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  O  .<_  ( P 
.\/  v ) )
37 simp11l 1094 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
38 hllat 32730 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Lat )
3937, 38syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  Lat )
40 eqid 2441 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
4140, 11atbase 32656 . . . . . . . . . . 11  |-  ( N  e.  A  ->  N  e.  ( Base `  K
) )
424, 41syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  N  e.  (
Base `  K )
)
4340, 9, 11hlatjcl 32733 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  P  e.  A  /\  v  e.  A )  ->  ( P  .\/  v
)  e.  ( Base `  K ) )
4437, 28, 30, 43syl3anc 1213 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( P  .\/  v )  e.  (
Base `  K )
)
4540, 11atbase 32656 . . . . . . . . . . 11  |-  ( O  e.  A  ->  O  e.  ( Base `  K
) )
4620, 45syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  O  e.  (
Base `  K )
)
4740, 8, 9latjlej12 15233 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( N  e.  ( Base `  K )  /\  ( P  .\/  v )  e.  ( Base `  K
) )  /\  ( O  e.  ( Base `  K )  /\  ( P  .\/  v )  e.  ( Base `  K
) ) )  -> 
( ( N  .<_  ( P  .\/  v )  /\  O  .<_  ( P 
.\/  v ) )  ->  ( N  .\/  O )  .<_  ( ( P  .\/  v )  .\/  ( P  .\/  v ) ) ) )
4839, 42, 44, 46, 44, 47syl122anc 1222 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( N 
.<_  ( P  .\/  v
)  /\  O  .<_  ( P  .\/  v ) )  ->  ( N  .\/  O )  .<_  ( ( P  .\/  v ) 
.\/  ( P  .\/  v ) ) ) )
4932, 36, 48mp2and 674 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( N  .\/  O )  .<_  ( ( P  .\/  v )  .\/  ( P  .\/  v ) ) )
5040, 9latjidm 15240 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  .\/  v )  e.  ( Base `  K
) )  ->  (
( P  .\/  v
)  .\/  ( P  .\/  v ) )  =  ( P  .\/  v
) )
5139, 44, 50syl2anc 656 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( P 
.\/  v )  .\/  ( P  .\/  v ) )  =  ( P 
.\/  v ) )
5249, 51breqtrd 4313 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( N  .\/  O )  .<_  ( P  .\/  v ) )
5352adantr 462 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( N  .\/  O )  .<_  ( P 
.\/  v ) )
5439adantr 462 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  K  e.  Lat )
5540, 11atbase 32656 . . . . . . . 8  |-  ( z  e.  A  ->  z  e.  ( Base `  K
) )
5655adantl 463 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  z  e.  ( Base `  K )
)
5740, 9, 11hlatjcl 32733 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  N  e.  A  /\  O  e.  A )  ->  ( N  .\/  O
)  e.  ( Base `  K ) )
5837, 4, 20, 57syl3anc 1213 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( N  .\/  O )  e.  ( Base `  K ) )
5958adantr 462 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( N  .\/  O )  e.  (
Base `  K )
)
6044adantr 462 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( P  .\/  v )  e.  (
Base `  K )
)
6140, 8lattr 15222 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( z  e.  (
Base `  K )  /\  ( N  .\/  O
)  e.  ( Base `  K )  /\  ( P  .\/  v )  e.  ( Base `  K
) ) )  -> 
( ( z  .<_  ( N  .\/  O )  /\  ( N  .\/  O )  .<_  ( P  .\/  v ) )  -> 
z  .<_  ( P  .\/  v ) ) )
6254, 56, 59, 60, 61syl13anc 1215 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( (
z  .<_  ( N  .\/  O )  /\  ( N 
.\/  O )  .<_  ( P  .\/  v ) )  ->  z  .<_  ( P  .\/  v ) ) )
6353, 62mpan2d 669 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( z  .<_  ( N  .\/  O
)  ->  z  .<_  ( P  .\/  v ) ) )
6426, 27, 633anim123d 1291 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( (
z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( N  .\/  O
) )  ->  (
z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( P  .\/  v
) ) ) )
6564anim2d 562 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( ( -.  z  .<_  W  /\  ( z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( N 
.\/  O ) ) )  ->  ( -.  z  .<_  W  /\  (
z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( P  .\/  v
) ) ) ) )
6665reximdva 2826 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( E. z  e.  A  ( -.  z  .<_  W  /\  (
z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( N  .\/  O
) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) ) )
6725, 66mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   E.wrex 2714   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   Basecbs 14170   lecple 14241   joincjn 15110   meetcmee 15111   Latclat 15211   Atomscatm 32630   HLchlt 32717   LHypclh 33350   LTrncltrn 33467   trLctrl 33524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-map 7212  df-poset 15112  df-plt 15124  df-lub 15140  df-glb 15141  df-join 15142  df-meet 15143  df-p0 15205  df-p1 15206  df-lat 15212  df-clat 15274  df-oposet 32543  df-ol 32545  df-oml 32546  df-covers 32633  df-ats 32634  df-atl 32665  df-cvlat 32689  df-hlat 32718  df-llines 32864  df-lplanes 32865  df-psubsp 32869  df-pmap 32870  df-padd 33162  df-lhyp 33354  df-laut 33355  df-ldil 33470  df-ltrn 33471  df-trl 33525
This theorem is referenced by:  cdlemg33b  34073
  Copyright terms: Public domain W3C validator