Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg33a Structured version   Unicode version

Theorem cdlemg33a 35379
Description: TODO: Fix comment. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
cdlemg33.o  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
Assertion
Ref Expression
cdlemg33a  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) )
Distinct variable groups:    A, r    G, r    .\/ , r    .<_ , r    P, r    Q, r    W, r    F, r    z, A    z, F, r    H, r, z   
z,  .\/    K, r, z   
z,  .<_    N, r, z    z, P    z, Q    z, R    z, T    z, W    z,
v, r    z, G    z, O, r
Allowed substitution hints:    A( v)    P( v)    Q( v)    R( v, r)    T( v, r)    F( v)    G( v)    H( v)    .\/ ( v)    K( v)    .<_ ( v)    ./\ ( z,
v, r)    N( v)    O( v)    W( v)

Proof of Theorem cdlemg33a
StepHypRef Expression
1 simp11 1021 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 1022 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 1023 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp22l 1110 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  N  e.  A
)
5 simp21 1024 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( v  e.  A  /\  v  .<_  W ) )
6 simp23l 1112 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  F  e.  T
)
7 simp32 1028 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  v  =/=  ( R `  F )
)
8 cdlemg12.l . . . . . 6  |-  .<_  =  ( le `  K )
9 cdlemg12.j . . . . . 6  |-  .\/  =  ( join `  K )
10 cdlemg12.m . . . . . 6  |-  ./\  =  ( meet `  K )
11 cdlemg12.a . . . . . 6  |-  A  =  ( Atoms `  K )
12 cdlemg12.h . . . . . 6  |-  H  =  ( LHyp `  K
)
13 cdlemg12.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
14 cdlemg12b.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
15 cdlemg31.n . . . . . 6  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
168, 9, 10, 11, 12, 13, 14, 15cdlemg31d 35373 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )  /\  N  e.  A
) )  ->  -.  N  .<_  W )
171, 2, 3, 5, 6, 7, 4, 16syl133anc 1246 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  N  .<_  W )
184, 17jca 532 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( N  e.  A  /\  -.  N  .<_  W ) )
19 simp31l 1114 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  =/=  Q
)
20 simp22r 1111 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  O  e.  A
)
21 simp31r 1115 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  N  =/=  O
)
2220, 21jca 532 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( O  e.  A  /\  N  =/= 
O ) )
23 simp33 1029 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )
248, 9, 11, 124atex3 34754 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( N  e.  A  /\  -.  N  .<_  W ) )  /\  ( P  =/=  Q  /\  ( O  e.  A  /\  N  =/=  O
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( N 
.\/  O ) ) ) )
251, 2, 3, 18, 19, 22, 23, 24syl133anc 1246 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( N 
.\/  O ) ) ) )
26 idd 24 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( z  =/=  N  ->  z  =/=  N ) )
27 idd 24 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( z  =/=  O  ->  z  =/=  O ) )
28 simp12l 1104 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  e.  A
)
29 simp13l 1106 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  Q  e.  A
)
30 simp21l 1108 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  v  e.  A
)
318, 9, 10, 11, 12, 13, 14, 15cdlemg31a 35370 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  (
v  e.  A  /\  F  e.  T )
)  ->  N  .<_  ( P  .\/  v ) )
321, 28, 29, 30, 6, 31syl122anc 1232 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  N  .<_  ( P 
.\/  v ) )
33 simp23r 1113 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  G  e.  T
)
34 cdlemg33.o . . . . . . . . . . 11  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
358, 9, 10, 11, 12, 13, 14, 34cdlemg31a 35370 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  (
v  e.  A  /\  G  e.  T )
)  ->  O  .<_  ( P  .\/  v ) )
361, 28, 29, 30, 33, 35syl122anc 1232 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  O  .<_  ( P 
.\/  v ) )
37 simp11l 1102 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
38 hllat 34037 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Lat )
3937, 38syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  Lat )
40 eqid 2462 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
4140, 11atbase 33963 . . . . . . . . . . 11  |-  ( N  e.  A  ->  N  e.  ( Base `  K
) )
424, 41syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  N  e.  (
Base `  K )
)
4340, 9, 11hlatjcl 34040 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  P  e.  A  /\  v  e.  A )  ->  ( P  .\/  v
)  e.  ( Base `  K ) )
4437, 28, 30, 43syl3anc 1223 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( P  .\/  v )  e.  (
Base `  K )
)
4540, 11atbase 33963 . . . . . . . . . . 11  |-  ( O  e.  A  ->  O  e.  ( Base `  K
) )
4620, 45syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  O  e.  (
Base `  K )
)
4740, 8, 9latjlej12 15545 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( N  e.  ( Base `  K )  /\  ( P  .\/  v )  e.  ( Base `  K
) )  /\  ( O  e.  ( Base `  K )  /\  ( P  .\/  v )  e.  ( Base `  K
) ) )  -> 
( ( N  .<_  ( P  .\/  v )  /\  O  .<_  ( P 
.\/  v ) )  ->  ( N  .\/  O )  .<_  ( ( P  .\/  v )  .\/  ( P  .\/  v ) ) ) )
4839, 42, 44, 46, 44, 47syl122anc 1232 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( N 
.<_  ( P  .\/  v
)  /\  O  .<_  ( P  .\/  v ) )  ->  ( N  .\/  O )  .<_  ( ( P  .\/  v ) 
.\/  ( P  .\/  v ) ) ) )
4932, 36, 48mp2and 679 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( N  .\/  O )  .<_  ( ( P  .\/  v )  .\/  ( P  .\/  v ) ) )
5040, 9latjidm 15552 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  .\/  v )  e.  ( Base `  K
) )  ->  (
( P  .\/  v
)  .\/  ( P  .\/  v ) )  =  ( P  .\/  v
) )
5139, 44, 50syl2anc 661 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( P 
.\/  v )  .\/  ( P  .\/  v ) )  =  ( P 
.\/  v ) )
5249, 51breqtrd 4466 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( N  .\/  O )  .<_  ( P  .\/  v ) )
5352adantr 465 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( N  .\/  O )  .<_  ( P 
.\/  v ) )
5439adantr 465 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  K  e.  Lat )
5540, 11atbase 33963 . . . . . . . 8  |-  ( z  e.  A  ->  z  e.  ( Base `  K
) )
5655adantl 466 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  z  e.  ( Base `  K )
)
5740, 9, 11hlatjcl 34040 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  N  e.  A  /\  O  e.  A )  ->  ( N  .\/  O
)  e.  ( Base `  K ) )
5837, 4, 20, 57syl3anc 1223 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( N  .\/  O )  e.  ( Base `  K ) )
5958adantr 465 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( N  .\/  O )  e.  (
Base `  K )
)
6044adantr 465 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( P  .\/  v )  e.  (
Base `  K )
)
6140, 8lattr 15534 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( z  e.  (
Base `  K )  /\  ( N  .\/  O
)  e.  ( Base `  K )  /\  ( P  .\/  v )  e.  ( Base `  K
) ) )  -> 
( ( z  .<_  ( N  .\/  O )  /\  ( N  .\/  O )  .<_  ( P  .\/  v ) )  -> 
z  .<_  ( P  .\/  v ) ) )
6254, 56, 59, 60, 61syl13anc 1225 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( (
z  .<_  ( N  .\/  O )  /\  ( N 
.\/  O )  .<_  ( P  .\/  v ) )  ->  z  .<_  ( P  .\/  v ) ) )
6353, 62mpan2d 674 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( z  .<_  ( N  .\/  O
)  ->  z  .<_  ( P  .\/  v ) ) )
6426, 27, 633anim123d 1301 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( (
z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( N  .\/  O
) )  ->  (
z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( P  .\/  v
) ) ) )
6564anim2d 565 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  /\  z  e.  A
)  ->  ( ( -.  z  .<_  W  /\  ( z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( N 
.\/  O ) ) )  ->  ( -.  z  .<_  W  /\  (
z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( P  .\/  v
) ) ) ) )
6665reximdva 2933 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( E. z  e.  A  ( -.  z  .<_  W  /\  (
z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( N  .\/  O
) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) ) )
6725, 66mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  =/=  Q  /\  N  =/=  O
)  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2657   E.wrex 2810   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   Basecbs 14481   lecple 14553   joincjn 15422   meetcmee 15423   Latclat 15523   Atomscatm 33937   HLchlt 34024   LHypclh 34657   LTrncltrn 34774   trLctrl 34831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-iin 4323  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6776  df-2nd 6777  df-map 7414  df-poset 15424  df-plt 15436  df-lub 15452  df-glb 15453  df-join 15454  df-meet 15455  df-p0 15517  df-p1 15518  df-lat 15524  df-clat 15586  df-oposet 33850  df-ol 33852  df-oml 33853  df-covers 33940  df-ats 33941  df-atl 33972  df-cvlat 33996  df-hlat 34025  df-llines 34171  df-lplanes 34172  df-psubsp 34176  df-pmap 34177  df-padd 34469  df-lhyp 34661  df-laut 34662  df-ldil 34777  df-ltrn 34778  df-trl 34832
This theorem is referenced by:  cdlemg33b  35380
  Copyright terms: Public domain W3C validator