Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg31d Structured version   Unicode version

Theorem cdlemg31d 35514
Description: Eliminate  ( F `
 P )  =/= 
P from cdlemg31c 35513. TODO: Prove directly. Todo: do we need to eliminate  ( F `  P )  =/=  P? It might be better to do this all at once at the end. See also cdlemg29 35519 vs. cdlemg28 35518. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
Assertion
Ref Expression
cdlemg31d  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )  /\  N  e.  A
) )  ->  -.  N  .<_  W )

Proof of Theorem cdlemg31d
StepHypRef Expression
1 simp22r 1116 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )  /\  N  e.  A
) )  ->  -.  Q  .<_  W )
21adantr 465 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  ->  -.  Q  .<_  W )
3 simpl1 999 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  -> 
( K  e.  HL  /\  W  e.  H ) )
4 simp21l 1113 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )  /\  N  e.  A
) )  ->  P  e.  A )
54adantr 465 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  ->  P  e.  A )
6 simp22l 1115 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )  /\  N  e.  A
) )  ->  Q  e.  A )
76adantr 465 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  ->  Q  e.  A )
8 simp23l 1117 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )  /\  N  e.  A
) )  ->  v  e.  A )
98adantr 465 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  -> 
v  e.  A )
10 simpl31 1077 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  ->  F  e.  T )
11 cdlemg12.l . . . . . . . 8  |-  .<_  =  ( le `  K )
12 cdlemg12.j . . . . . . . 8  |-  .\/  =  ( join `  K )
13 cdlemg12.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
14 cdlemg12.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
15 cdlemg12.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
16 cdlemg12.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
17 cdlemg12b.r . . . . . . . 8  |-  R  =  ( ( trL `  K
) `  W )
18 cdlemg31.n . . . . . . . 8  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
1911, 12, 13, 14, 15, 16, 17, 18cdlemg31b 35512 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  (
v  e.  A  /\  F  e.  T )
)  ->  N  .<_  ( Q  .\/  ( R `
 F ) ) )
203, 5, 7, 9, 10, 19syl122anc 1237 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  ->  N  .<_  ( Q  .\/  ( R `  F ) ) )
21 simpl21 1074 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
22 simpr 461 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  -> 
( F `  P
)  =  P )
23 eqid 2467 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
2411, 23, 14, 15, 16, 17trl0 34984 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( R `  F )  =  ( 0. `  K ) )
253, 21, 10, 22, 24syl112anc 1232 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  -> 
( R `  F
)  =  ( 0.
`  K ) )
2625oveq2d 6300 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  -> 
( Q  .\/  ( R `  F )
)  =  ( Q 
.\/  ( 0. `  K ) ) )
27 simp1l 1020 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )  /\  N  e.  A
) )  ->  K  e.  HL )
28 hlol 34176 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OL )
2927, 28syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )  /\  N  e.  A
) )  ->  K  e.  OL )
3029adantr 465 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  ->  K  e.  OL )
31 eqid 2467 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
3231, 14atbase 34104 . . . . . . . . 9  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
337, 32syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  ->  Q  e.  ( Base `  K ) )
3431, 12, 23olj01 34040 . . . . . . . 8  |-  ( ( K  e.  OL  /\  Q  e.  ( Base `  K ) )  -> 
( Q  .\/  ( 0. `  K ) )  =  Q )
3530, 33, 34syl2anc 661 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  -> 
( Q  .\/  ( 0. `  K ) )  =  Q )
3626, 35eqtrd 2508 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  -> 
( Q  .\/  ( R `  F )
)  =  Q )
3720, 36breqtrd 4471 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  ->  N  .<_  Q )
38 hlatl 34175 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  AtLat )
3927, 38syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )  /\  N  e.  A
) )  ->  K  e.  AtLat )
4039adantr 465 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  ->  K  e.  AtLat )
41 simpl33 1079 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  ->  N  e.  A )
4211, 14atcmp 34126 . . . . . 6  |-  ( ( K  e.  AtLat  /\  N  e.  A  /\  Q  e.  A )  ->  ( N  .<_  Q  <->  N  =  Q ) )
4340, 41, 7, 42syl3anc 1228 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  -> 
( N  .<_  Q  <->  N  =  Q ) )
4437, 43mpbid 210 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  ->  N  =  Q )
4544breq1d 4457 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  -> 
( N  .<_  W  <->  Q  .<_  W ) )
462, 45mtbird 301 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =  P )  ->  -.  N  .<_  W )
47 simpl1 999 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =/=  P )  -> 
( K  e.  HL  /\  W  e.  H ) )
48 simpl21 1074 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =/=  P )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
49 simpl22 1075 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =/=  P )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
50 simpl23 1076 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =/=  P )  -> 
( v  e.  A  /\  v  .<_  W ) )
51 simpl31 1077 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =/=  P )  ->  F  e.  T )
52 simpl32 1078 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =/=  P )  -> 
v  =/=  ( R `
 F ) )
53 simpr 461 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =/=  P )  -> 
( F `  P
)  =/=  P )
54 simpl33 1079 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =/=  P )  ->  N  e.  A )
5511, 12, 13, 14, 15, 16, 17, 18cdlemg31c 35513 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  F  e.  T )  /\  (
v  =/=  ( R `
 F )  /\  ( F `  P )  =/=  P  /\  N  e.  A ) )  ->  -.  N  .<_  W )
5647, 48, 49, 50, 51, 52, 53, 54, 55syl323anc 1258 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  (
v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F
)  /\  N  e.  A ) )  /\  ( F `  P )  =/=  P )  ->  -.  N  .<_  W )
5746, 56pm2.61dane 2785 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )  /\  N  e.  A
) )  ->  -.  N  .<_  W )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   Basecbs 14490   lecple 14562   joincjn 15431   meetcmee 15432   0.cp0 15524   OLcol 33989   Atomscatm 34078   AtLatcal 34079   HLchlt 34165   LHypclh 34798   LTrncltrn 34915   trLctrl 34972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-map 7422  df-poset 15433  df-plt 15445  df-lub 15461  df-glb 15462  df-join 15463  df-meet 15464  df-p0 15526  df-p1 15527  df-lat 15533  df-clat 15595  df-oposet 33991  df-ol 33993  df-oml 33994  df-covers 34081  df-ats 34082  df-atl 34113  df-cvlat 34137  df-hlat 34166  df-psubsp 34317  df-pmap 34318  df-padd 34610  df-lhyp 34802  df-laut 34803  df-ldil 34918  df-ltrn 34919  df-trl 34973
This theorem is referenced by:  cdlemg33b0  35515  cdlemg33a  35520
  Copyright terms: Public domain W3C validator