Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg31b0a Structured version   Unicode version

Theorem cdlemg31b0a 36818
Description: TODO: Fix comment. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
Assertion
Ref Expression
cdlemg31b0a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K ) ) )

Proof of Theorem cdlemg31b0a
StepHypRef Expression
1 simp1l 1018 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  K  e.  HL )
2 simp21l 1111 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  P  e.  A )
3 simp23l 1115 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  v  e.  A )
4 simp22l 1113 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  Q  e.  A )
5 simp1 994 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simp3l 1022 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  F  e.  T )
7 eqid 2454 . . . . 5  |-  ( 0.
`  K )  =  ( 0. `  K
)
8 cdlemg12.a . . . . 5  |-  A  =  ( Atoms `  K )
9 cdlemg12.h . . . . 5  |-  H  =  ( LHyp `  K
)
10 cdlemg12.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
11 cdlemg12b.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
127, 8, 9, 10, 11trlator0 36293 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( R `  F )  e.  A  \/  ( R `  F )  =  ( 0. `  K ) ) )
135, 6, 12syl2anc 659 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  (
( R `  F
)  e.  A  \/  ( R `  F )  =  ( 0. `  K ) ) )
14 simp22 1028 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
15 cdlemg12.l . . . . . . . 8  |-  .<_  =  ( le `  K )
1615, 9, 10, 11trlle 36306 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
175, 6, 16syl2anc 659 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( R `  F )  .<_  W )
1813, 17jca 530 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  (
( ( R `  F )  e.  A  \/  ( R `  F
)  =  ( 0.
`  K ) )  /\  ( R `  F )  .<_  W ) )
19 simp23 1029 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  (
v  e.  A  /\  v  .<_  W ) )
20 simp3r 1023 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  v  =/=  ( R `  F
) )
2120necomd 2725 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( R `  F )  =/=  v )
22 cdlemg12.j . . . . . 6  |-  .\/  =  ( join `  K )
2315, 22, 7, 8, 9lhp2at0ne 36157 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  e.  A
)  /\  ( (
( ( R `  F )  e.  A  \/  ( R `  F
)  =  ( 0.
`  K ) )  /\  ( R `  F )  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( R `  F )  =/=  v )  -> 
( Q  .\/  ( R `  F )
)  =/=  ( P 
.\/  v ) )
245, 14, 2, 18, 19, 21, 23syl321anc 1248 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( Q  .\/  ( R `  F ) )  =/=  ( P  .\/  v
) )
2524necomd 2725 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( P  .\/  v )  =/=  ( Q  .\/  ( R `  F )
) )
26 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
2722, 26, 7, 82at0mat0 35646 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  v  e.  A )  /\  ( Q  e.  A  /\  ( ( R `  F )  e.  A  \/  ( R `  F
)  =  ( 0.
`  K ) )  /\  ( P  .\/  v )  =/=  ( Q  .\/  ( R `  F ) ) ) )  ->  ( (
( P  .\/  v
)  ./\  ( Q  .\/  ( R `  F
) ) )  e.  A  \/  ( ( P  .\/  v ) 
./\  ( Q  .\/  ( R `  F ) ) )  =  ( 0. `  K ) ) )
281, 2, 3, 4, 13, 25, 27syl33anc 1241 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  (
( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )  e.  A  \/  (
( P  .\/  v
)  ./\  ( Q  .\/  ( R `  F
) ) )  =  ( 0. `  K
) ) )
29 cdlemg31.n . . . 4  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
3029eleq1i 2531 . . 3  |-  ( N  e.  A  <->  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `
 F ) ) )  e.  A )
3129eqeq1i 2461 . . 3  |-  ( N  =  ( 0. `  K )  <->  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `
 F ) ) )  =  ( 0.
`  K ) )
3230, 31orbi12i 519 . 2  |-  ( ( N  e.  A  \/  N  =  ( 0. `  K ) )  <->  ( (
( P  .\/  v
)  ./\  ( Q  .\/  ( R `  F
) ) )  e.  A  \/  ( ( P  .\/  v ) 
./\  ( Q  .\/  ( R `  F ) ) )  =  ( 0. `  K ) ) )
3328, 32sylibr 212 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 366    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   lecple 14791   joincjn 15772   meetcmee 15773   0.cp0 15866   Atomscatm 35385   HLchlt 35472   LHypclh 36105   LTrncltrn 36222   trLctrl 36280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-map 7414  df-preset 15756  df-poset 15774  df-plt 15787  df-lub 15803  df-glb 15804  df-join 15805  df-meet 15806  df-p0 15868  df-p1 15869  df-lat 15875  df-clat 15937  df-oposet 35298  df-ol 35300  df-oml 35301  df-covers 35388  df-ats 35389  df-atl 35420  df-cvlat 35444  df-hlat 35473  df-llines 35619  df-psubsp 35624  df-pmap 35625  df-padd 35917  df-lhyp 36109  df-laut 36110  df-ldil 36225  df-ltrn 36226  df-trl 36281
This theorem is referenced by:  cdlemg27b  36819  cdlemg33  36834
  Copyright terms: Public domain W3C validator