Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2kq Structured version   Unicode version

Theorem cdlemg2kq 34554
Description: cdlemg2k 34553 with  P and  Q swapped. TODO: FIX COMMENT (Contributed by NM, 15-May-2013.)
Hypotheses
Ref Expression
cdlemg2inv.h  |-  H  =  ( LHyp `  K
)
cdlemg2inv.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg2j.l  |-  .<_  =  ( le `  K )
cdlemg2j.j  |-  .\/  =  ( join `  K )
cdlemg2j.a  |-  A  =  ( Atoms `  K )
cdlemg2j.m  |-  ./\  =  ( meet `  K )
cdlemg2j.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdlemg2kq  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  P
)  .\/  ( F `  Q ) )  =  ( ( F `  Q )  .\/  U
) )

Proof of Theorem cdlemg2kq
StepHypRef Expression
1 simp1 988 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2r 1015 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
3 simp2l 1014 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp3 990 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  F  e.  T )
5 cdlemg2inv.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdlemg2inv.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
7 cdlemg2j.l . . . 4  |-  .<_  =  ( le `  K )
8 cdlemg2j.j . . . 4  |-  .\/  =  ( join `  K )
9 cdlemg2j.a . . . 4  |-  A  =  ( Atoms `  K )
10 cdlemg2j.m . . . 4  |-  ./\  =  ( meet `  K )
11 eqid 2451 . . . 4  |-  ( ( Q  .\/  P ) 
./\  W )  =  ( ( Q  .\/  P )  ./\  W )
125, 6, 7, 8, 9, 10, 11cdlemg2k 34553 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  Q
)  .\/  ( F `  P ) )  =  ( ( F `  Q )  .\/  (
( Q  .\/  P
)  ./\  W )
) )
131, 2, 3, 4, 12syl121anc 1224 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  Q
)  .\/  ( F `  P ) )  =  ( ( F `  Q )  .\/  (
( Q  .\/  P
)  ./\  W )
) )
14 simp1l 1012 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  K  e.  HL )
15 simp2ll 1055 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  P  e.  A )
167, 9, 5, 6ltrnat 34092 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
171, 4, 15, 16syl3anc 1219 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( F `  P )  e.  A )
18 simp2rl 1057 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  Q  e.  A )
197, 9, 5, 6ltrnat 34092 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  Q  e.  A
)  ->  ( F `  Q )  e.  A
)
201, 4, 18, 19syl3anc 1219 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( F `  Q )  e.  A )
218, 9hlatjcom 33320 . . 3  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  ( F `  Q )  e.  A )  ->  (
( F `  P
)  .\/  ( F `  Q ) )  =  ( ( F `  Q )  .\/  ( F `  P )
) )
2214, 17, 20, 21syl3anc 1219 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  P
)  .\/  ( F `  Q ) )  =  ( ( F `  Q )  .\/  ( F `  P )
) )
23 cdlemg2j.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
248, 9hlatjcom 33320 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
2514, 15, 18, 24syl3anc 1219 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
2625oveq1d 6207 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( P  .\/  Q
)  ./\  W )  =  ( ( Q 
.\/  P )  ./\  W ) )
2723, 26syl5eq 2504 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  U  =  ( ( Q 
.\/  P )  ./\  W ) )
2827oveq2d 6208 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  Q
)  .\/  U )  =  ( ( F `
 Q )  .\/  ( ( Q  .\/  P )  ./\  W )
) )
2913, 22, 283eqtr4d 2502 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  P
)  .\/  ( F `  Q ) )  =  ( ( F `  Q )  .\/  U
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4392   ` cfv 5518  (class class class)co 6192   lecple 14349   joincjn 15218   meetcmee 15219   Atomscatm 33216   HLchlt 33303   LHypclh 33936   LTrncltrn 34053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-riotaBAD 32912
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-iun 4273  df-iin 4274  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-1st 6679  df-2nd 6680  df-undef 6894  df-map 7318  df-poset 15220  df-plt 15232  df-lub 15248  df-glb 15249  df-join 15250  df-meet 15251  df-p0 15313  df-p1 15314  df-lat 15320  df-clat 15382  df-oposet 33129  df-ol 33131  df-oml 33132  df-covers 33219  df-ats 33220  df-atl 33251  df-cvlat 33275  df-hlat 33304  df-llines 33450  df-lplanes 33451  df-lvols 33452  df-lines 33453  df-psubsp 33455  df-pmap 33456  df-padd 33748  df-lhyp 33940  df-laut 33941  df-ldil 34056  df-ltrn 34057  df-trl 34111
This theorem is referenced by:  cdlemg18b  34631  cdlemg18c  34632
  Copyright terms: Public domain W3C validator