Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2kq Structured version   Unicode version

Theorem cdlemg2kq 35273
Description: cdlemg2k 35272 with  P and  Q swapped. TODO: FIX COMMENT (Contributed by NM, 15-May-2013.)
Hypotheses
Ref Expression
cdlemg2inv.h  |-  H  =  ( LHyp `  K
)
cdlemg2inv.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg2j.l  |-  .<_  =  ( le `  K )
cdlemg2j.j  |-  .\/  =  ( join `  K )
cdlemg2j.a  |-  A  =  ( Atoms `  K )
cdlemg2j.m  |-  ./\  =  ( meet `  K )
cdlemg2j.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdlemg2kq  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  P
)  .\/  ( F `  Q ) )  =  ( ( F `  Q )  .\/  U
) )

Proof of Theorem cdlemg2kq
StepHypRef Expression
1 simp1 991 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2r 1018 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
3 simp2l 1017 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp3 993 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  F  e.  T )
5 cdlemg2inv.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdlemg2inv.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
7 cdlemg2j.l . . . 4  |-  .<_  =  ( le `  K )
8 cdlemg2j.j . . . 4  |-  .\/  =  ( join `  K )
9 cdlemg2j.a . . . 4  |-  A  =  ( Atoms `  K )
10 cdlemg2j.m . . . 4  |-  ./\  =  ( meet `  K )
11 eqid 2460 . . . 4  |-  ( ( Q  .\/  P ) 
./\  W )  =  ( ( Q  .\/  P )  ./\  W )
125, 6, 7, 8, 9, 10, 11cdlemg2k 35272 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  Q
)  .\/  ( F `  P ) )  =  ( ( F `  Q )  .\/  (
( Q  .\/  P
)  ./\  W )
) )
131, 2, 3, 4, 12syl121anc 1228 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  Q
)  .\/  ( F `  P ) )  =  ( ( F `  Q )  .\/  (
( Q  .\/  P
)  ./\  W )
) )
14 simp1l 1015 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  K  e.  HL )
15 simp2ll 1058 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  P  e.  A )
167, 9, 5, 6ltrnat 34811 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
171, 4, 15, 16syl3anc 1223 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( F `  P )  e.  A )
18 simp2rl 1060 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  Q  e.  A )
197, 9, 5, 6ltrnat 34811 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  Q  e.  A
)  ->  ( F `  Q )  e.  A
)
201, 4, 18, 19syl3anc 1223 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( F `  Q )  e.  A )
218, 9hlatjcom 34039 . . 3  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  ( F `  Q )  e.  A )  ->  (
( F `  P
)  .\/  ( F `  Q ) )  =  ( ( F `  Q )  .\/  ( F `  P )
) )
2214, 17, 20, 21syl3anc 1223 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  P
)  .\/  ( F `  Q ) )  =  ( ( F `  Q )  .\/  ( F `  P )
) )
23 cdlemg2j.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
248, 9hlatjcom 34039 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
2514, 15, 18, 24syl3anc 1223 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
2625oveq1d 6290 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( P  .\/  Q
)  ./\  W )  =  ( ( Q 
.\/  P )  ./\  W ) )
2723, 26syl5eq 2513 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  U  =  ( ( Q 
.\/  P )  ./\  W ) )
2827oveq2d 6291 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  Q
)  .\/  U )  =  ( ( F `
 Q )  .\/  ( ( Q  .\/  P )  ./\  W )
) )
2913, 22, 283eqtr4d 2511 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  P
)  .\/  ( F `  Q ) )  =  ( ( F `  Q )  .\/  U
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   lecple 14551   joincjn 15420   meetcmee 15421   Atomscatm 33935   HLchlt 34022   LHypclh 34655   LTrncltrn 34772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-riotaBAD 33631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-undef 6992  df-map 7412  df-poset 15422  df-plt 15434  df-lub 15450  df-glb 15451  df-join 15452  df-meet 15453  df-p0 15515  df-p1 15516  df-lat 15522  df-clat 15584  df-oposet 33848  df-ol 33850  df-oml 33851  df-covers 33938  df-ats 33939  df-atl 33970  df-cvlat 33994  df-hlat 34023  df-llines 34169  df-lplanes 34170  df-lvols 34171  df-lines 34172  df-psubsp 34174  df-pmap 34175  df-padd 34467  df-lhyp 34659  df-laut 34660  df-ldil 34775  df-ltrn 34776  df-trl 34830
This theorem is referenced by:  cdlemg18b  35350  cdlemg18c  35351
  Copyright terms: Public domain W3C validator