Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg29 Structured version   Visualization version   Unicode version

Theorem cdlemg29 34272
Description: Eliminate  ( F `
 P )  =/= 
P and  ( G `  P )  =/=  P from cdlemg28 34271. TODO: would it be better to do this later? (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
cdlemg33.o  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
Assertion
Ref Expression
cdlemg29  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
Distinct variable groups:    z, A    z, F    z, H    z,  .\/    z, K    z,  .<_    z, N    z, P    z, Q    z, R    z, T    z, W    z, v    z, G   
z, O
Allowed substitution hints:    A( v)    P( v)    Q( v)    R( v)    T( v)    F( v)    G( v)    H( v)    .\/ ( v)    K( v)   
.<_ ( v)    ./\ ( z, v)    N( v)    O( v)    W( v)

Proof of Theorem cdlemg29
StepHypRef Expression
1 simpl11 1083 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( F `  P )  =  P )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpl12 1084 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( F `  P )  =  P )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simpl13 1085 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( F `  P )  =  P )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp23l 1129 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  ->  F  e.  T )
54adantr 467 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( F `  P )  =  P )  ->  F  e.  T )
6 simp23r 1130 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  ->  G  e.  T )
76adantr 467 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( F `  P )  =  P )  ->  G  e.  T )
8 simpr 463 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( F `  P )  =  P )  -> 
( F `  P
)  =  P )
9 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
10 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
11 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
12 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
13 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
14 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
15 cdlemg12b.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
169, 10, 11, 12, 13, 14, 15cdlemg14f 34220 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
171, 2, 3, 5, 7, 8, 16syl123anc 1285 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( F `  P )  =  P )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
18 simpl11 1083 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( G `  P )  =  P )  -> 
( K  e.  HL  /\  W  e.  H ) )
19 simpl12 1084 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( G `  P )  =  P )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
20 simpl13 1085 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( G `  P )  =  P )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
214adantr 467 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( G `  P )  =  P )  ->  F  e.  T )
226adantr 467 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( G `  P )  =  P )  ->  G  e.  T )
23 simpr 463 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( G `  P )  =  P )  -> 
( G `  P
)  =  P )
249, 10, 11, 12, 13, 14, 15cdlemg14g 34221 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
2518, 19, 20, 21, 22, 23, 24syl123anc 1285 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( G `  P )  =  P )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
26 simpl1 1011 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
27 simpl2 1012 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P ) )  ->  ( (
v  e.  A  /\  v  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) ) )
28 simp31l 1131 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  -> 
z  =/=  N )
2928adantr 467 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P ) )  ->  z  =/=  N )
30 simp31r 1132 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  -> 
z  =/=  O )
3130adantr 467 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P ) )  ->  z  =/=  O )
32 simpl32 1090 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P ) )  ->  z  .<_  ( P  .\/  v ) )
3329, 31, 323jca 1188 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P ) )  ->  ( z  =/=  N  /\  z  =/= 
O  /\  z  .<_  ( P  .\/  v ) ) )
34 simpl33 1091 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P ) )  ->  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) )
35 simpr 463 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P ) )  ->  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P ) )
36 cdlemg31.n . . . 4  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
37 cdlemg33.o . . . 4  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
389, 10, 11, 12, 13, 14, 15, 36, 37cdlemg28 34271 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
3926, 27, 33, 34, 35, 38syl113anc 1280 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
4017, 25, 39pm2.61da2ne 2712 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   class class class wbr 4402   ` cfv 5582  (class class class)co 6290   lecple 15197   joincjn 16189   meetcmee 16190   Atomscatm 32829   HLchlt 32916   LHypclh 33549   LTrncltrn 33666   trLctrl 33724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-riotaBAD 32525
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-1st 6793  df-2nd 6794  df-undef 7020  df-map 7474  df-preset 16173  df-poset 16191  df-plt 16204  df-lub 16220  df-glb 16221  df-join 16222  df-meet 16223  df-p0 16285  df-p1 16286  df-lat 16292  df-clat 16354  df-oposet 32742  df-ol 32744  df-oml 32745  df-covers 32832  df-ats 32833  df-atl 32864  df-cvlat 32888  df-hlat 32917  df-llines 33063  df-lplanes 33064  df-lvols 33065  df-lines 33066  df-psubsp 33068  df-pmap 33069  df-padd 33361  df-lhyp 33553  df-laut 33554  df-ldil 33669  df-ltrn 33670  df-trl 33725
This theorem is referenced by:  cdlemg34  34279
  Copyright terms: Public domain W3C validator