Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg28b Structured version   Unicode version

Theorem cdlemg28b 34670
Description: Part of proof of Lemma G of [Crawley] p. 116. Second equality of the equation of line 14 on p. 117. Note that  -.  z  .<_  W is redundant here (but simplifies cdlemg28 34671.) (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
cdlemg33.o  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
Assertion
Ref Expression
cdlemg28b  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
)  =  ( ( z  .\/  ( F `
 ( G `  z ) ) ) 
./\  W ) )
Distinct variable groups:    z, A    z, F    z, H    z,  .\/    z, K    z,  .<_    z, N    z, P    z, Q    z, R    z, T    z, W    z, v    z, G   
z, O
Allowed substitution hints:    A( v)    P( v)    Q( v)    R( v)    T( v)    F( v)    G( v)    H( v)    .\/ ( v)    K( v)   
.<_ ( v)    ./\ ( z, v)    N( v)    O( v)    W( v)

Proof of Theorem cdlemg28b
StepHypRef Expression
1 simp11 1018 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp13 1020 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
3 simp22 1022 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( z  e.  A  /\  -.  z  .<_  W ) )
4 simp23l 1109 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  F  e.  T
)
5 simp23r 1110 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  G  e.  T
)
6 simp1 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
7 simp22l 1107 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  z  e.  A
)
8 simp21 1021 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( v  e.  A  /\  v  .<_  W ) )
9 simp311 1135 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  z  =/=  N
)
104, 9jca 532 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( F  e.  T  /\  z  =/= 
N ) )
11 simp32l 1113 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  v  =/=  ( R `  F )
)
12 simp313 1137 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  z  .<_  ( P 
.\/  v ) )
13 simp33l 1115 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( F `  P )  =/=  P
)
14 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
15 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
16 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
17 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
18 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
19 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
20 cdlemg12b.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
21 cdlemg31.n . . . 4  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
2214, 15, 16, 17, 18, 19, 20, 21cdlemg27b 34663 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  ( R `  F )  .<_  ( Q 
.\/  z ) )
236, 7, 8, 10, 11, 12, 13, 22syl133anc 1242 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  -.  ( R `  F )  .<_  ( Q 
.\/  z ) )
24 simp312 1136 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  z  =/=  O
)
255, 24jca 532 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( G  e.  T  /\  z  =/= 
O ) )
26 simp32r 1114 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  v  =/=  ( R `  G )
)
27 simp33r 1116 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( G `  P )  =/=  P
)
28 cdlemg33.o . . . 4  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
2914, 15, 16, 17, 18, 19, 20, 28cdlemg27b 34663 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( G  e.  T  /\  z  =/= 
O ) )  /\  ( v  =/=  ( R `  G )  /\  z  .<_  ( P 
.\/  v )  /\  ( G `  P )  =/=  P ) )  ->  -.  ( R `  G )  .<_  ( Q 
.\/  z ) )
306, 7, 8, 25, 26, 12, 27, 29syl133anc 1242 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  -.  ( R `  G )  .<_  ( Q 
.\/  z ) )
3114, 15, 16, 17, 18, 19, 20cdlemg26zz 34658 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  ( R `  F )  .<_  ( Q  .\/  z
)  /\  -.  ( R `  G )  .<_  ( Q  .\/  z
) ) )  -> 
( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  W )  =  ( ( z 
.\/  ( F `  ( G `  z ) ) )  ./\  W
) )
321, 2, 3, 4, 5, 23, 30, 31syl133anc 1242 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
)  =  ( ( z  .\/  ( F `
 ( G `  z ) ) ) 
./\  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2647   class class class wbr 4399   ` cfv 5525  (class class class)co 6199   lecple 14363   joincjn 15232   meetcmee 15233   Atomscatm 33231   HLchlt 33318   LHypclh 33951   LTrncltrn 34068   trLctrl 34125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-riotaBAD 32927
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-iin 4281  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-1st 6686  df-2nd 6687  df-undef 6901  df-map 7325  df-poset 15234  df-plt 15246  df-lub 15262  df-glb 15263  df-join 15264  df-meet 15265  df-p0 15327  df-p1 15328  df-lat 15334  df-clat 15396  df-oposet 33144  df-ol 33146  df-oml 33147  df-covers 33234  df-ats 33235  df-atl 33266  df-cvlat 33290  df-hlat 33319  df-llines 33465  df-lplanes 33466  df-lvols 33467  df-lines 33468  df-psubsp 33470  df-pmap 33471  df-padd 33763  df-lhyp 33955  df-laut 33956  df-ldil 34071  df-ltrn 34072  df-trl 34126
This theorem is referenced by:  cdlemg28  34671
  Copyright terms: Public domain W3C validator