Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg28a Structured version   Unicode version

Theorem cdlemg28a 35845
Description: Part of proof of Lemma G of [Crawley] p. 116. First equality of the equation of line 14 on p. 117. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg28a  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( z 
.\/  ( F `  ( G `  z ) ) )  ./\  W
) )

Proof of Theorem cdlemg28a
StepHypRef Expression
1 simp11 1026 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp12 1027 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simp21 1029 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
( z  e.  A  /\  -.  z  .<_  W ) )
4 simp22 1030 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  ->  F  e.  T )
5 simp23 1031 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  ->  G  e.  T )
6 simp1 996 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) ) )
7 simp21l 1113 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
z  e.  A )
8 simp31l 1119 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
v  =/=  ( R `
 F ) )
9 simp32 1033 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
z  .<_  ( P  .\/  v ) )
10 simp33l 1123 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
( F `  P
)  =/=  P )
11 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
12 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
13 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
14 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
15 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
16 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
17 cdlemg12b.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
1811, 12, 13, 14, 15, 16, 17cdlemg27a 35844 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( z  e.  A  /\  F  e.  T
)  /\  ( v  =/=  ( R `  F
)  /\  z  .<_  ( P  .\/  v )  /\  ( F `  P )  =/=  P
) )  ->  -.  ( R `  F ) 
.<_  ( P  .\/  z
) )
196, 7, 4, 8, 9, 10, 18syl123anc 1245 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  ->  -.  ( R `  F
)  .<_  ( P  .\/  z ) )
20 simp31r 1120 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
v  =/=  ( R `
 G ) )
21 simp33r 1124 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
( G `  P
)  =/=  P )
2211, 12, 13, 14, 15, 16, 17cdlemg27a 35844 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( z  e.  A  /\  G  e.  T
)  /\  ( v  =/=  ( R `  G
)  /\  z  .<_  ( P  .\/  v )  /\  ( G `  P )  =/=  P
) )  ->  -.  ( R `  G ) 
.<_  ( P  .\/  z
) )
236, 7, 5, 20, 9, 21, 22syl123anc 1245 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  ->  -.  ( R `  G
)  .<_  ( P  .\/  z ) )
2411, 12, 13, 14, 15, 16, 17cdlemg25zz 35842 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  ( R `  F )  .<_  ( P  .\/  z
)  /\  -.  ( R `  G )  .<_  ( P  .\/  z
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( z 
.\/  ( F `  ( G `  z ) ) )  ./\  W
) )
251, 2, 3, 4, 5, 19, 23, 24syl133anc 1251 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( z 
.\/  ( F `  ( G `  z ) ) )  ./\  W
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   lecple 14579   joincjn 15448   meetcmee 15449   Atomscatm 34416   HLchlt 34503   LHypclh 35136   LTrncltrn 35253   trLctrl 35310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-riotaBAD 34112
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-undef 7014  df-map 7434  df-poset 15450  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-p1 15544  df-lat 15550  df-clat 15612  df-oposet 34329  df-ol 34331  df-oml 34332  df-covers 34419  df-ats 34420  df-atl 34451  df-cvlat 34475  df-hlat 34504  df-llines 34650  df-lplanes 34651  df-lvols 34652  df-lines 34653  df-psubsp 34655  df-pmap 34656  df-padd 34948  df-lhyp 35140  df-laut 35141  df-ldil 35256  df-ltrn 35257  df-trl 35311
This theorem is referenced by:  cdlemg28  35856
  Copyright terms: Public domain W3C validator