Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg27b Structured version   Unicode version

Theorem cdlemg27b 33715
Description: TODO: Fix comment. (Contributed by NM, 28-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
Assertion
Ref Expression
cdlemg27b  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  ( R `  F )  .<_  ( Q 
.\/  z ) )

Proof of Theorem cdlemg27b
StepHypRef Expression
1 simp11 1027 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 1028 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 1029 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp22 1031 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( v  e.  A  /\  v  .<_  W ) )
5 simp23l 1118 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  F  e.  T
)
6 simp31 1033 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  v  =/=  ( R `  F )
)
7 cdlemg12.l . . . . . 6  |-  .<_  =  ( le `  K )
8 cdlemg12.j . . . . . 6  |-  .\/  =  ( join `  K )
9 cdlemg12.m . . . . . 6  |-  ./\  =  ( meet `  K )
10 cdlemg12.a . . . . . 6  |-  A  =  ( Atoms `  K )
11 cdlemg12.h . . . . . 6  |-  H  =  ( LHyp `  K
)
12 cdlemg12.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
13 cdlemg12b.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
14 cdlemg31.n . . . . . 6  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
157, 8, 9, 10, 11, 12, 13, 14cdlemg31b0a 33714 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K ) ) )
161, 2, 3, 4, 5, 6, 15syl132anc 1248 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K
) ) )
17 simp23r 1119 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  z  =/=  N
)
1817adantr 463 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  ( N  e.  A  \/  N  =  ( 0. `  K
) ) )  -> 
z  =/=  N )
19 simp11l 1108 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  K  e.  HL )
2019adantr 463 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  K  e.  HL )
21 hlatl 32378 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  AtLat )
2220, 21syl 17 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  K  e.  AtLat
)
23 simpl21 1075 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  z  e.  A )
24 simpr 459 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  N  e.  A )
257, 10atcmp 32329 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  z  e.  A  /\  N  e.  A )  ->  (
z  .<_  N  <->  z  =  N ) )
2622, 23, 24, 25syl3anc 1230 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  ( z  .<_  N  <->  z  =  N ) )
2726necon3bbid 2650 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  ( -.  z  .<_  N  <->  z  =/=  N ) )
2819adantr 463 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  K  e.  HL )
2928, 21syl 17 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  K  e.  AtLat
)
30 simpl21 1075 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  z  e.  A )
31 eqid 2402 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
327, 31, 10atnle0 32327 . . . . . . . . 9  |-  ( ( K  e.  AtLat  /\  z  e.  A )  ->  -.  z  .<_  ( 0. `  K ) )
3329, 30, 32syl2anc 659 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  -.  z  .<_  ( 0. `  K
) )
34 simpr 459 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  N  =  ( 0. `  K ) )
3534breq2d 4407 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  ( z  .<_  N  <->  z  .<_  ( 0.
`  K ) ) )
3633, 35mtbird 299 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  -.  z  .<_  N )
3717adantr 463 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  z  =/=  N )
3836, 372thd 240 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  ( -.  z  .<_  N  <->  z  =/=  N ) )
3927, 38jaodan 786 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  ( N  e.  A  \/  N  =  ( 0. `  K
) ) )  -> 
( -.  z  .<_  N 
<->  z  =/=  N ) )
4018, 39mpbird 232 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  ( N  e.  A  \/  N  =  ( 0. `  K
) ) )  ->  -.  z  .<_  N )
4116, 40mpdan 666 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  z  .<_  N )
42 simp32 1034 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  z  .<_  ( P 
.\/  v ) )
43 hllat 32381 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
4419, 43syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  K  e.  Lat )
45 simp21 1030 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  z  e.  A
)
46 eqid 2402 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
4746, 10atbase 32307 . . . . . . . 8  |-  ( z  e.  A  ->  z  e.  ( Base `  K
) )
4845, 47syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  z  e.  (
Base `  K )
)
49 simp12l 1110 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  P  e.  A
)
50 simp22l 1116 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  v  e.  A
)
5146, 8, 10hlatjcl 32384 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  v  e.  A )  ->  ( P  .\/  v
)  e.  ( Base `  K ) )
5219, 49, 50, 51syl3anc 1230 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( P  .\/  v )  e.  (
Base `  K )
)
53 simp13l 1112 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  Q  e.  A
)
54 simp33 1035 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( F `  P )  =/=  P
)
557, 10, 11, 12, 13trlat 33187 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
561, 2, 5, 54, 55syl112anc 1234 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
5746, 8, 10hlatjcl 32384 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  ( R `  F )  e.  A )  -> 
( Q  .\/  ( R `  F )
)  e.  ( Base `  K ) )
5819, 53, 56, 57syl3anc 1230 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( Q  .\/  ( R `  F ) )  e.  ( Base `  K ) )
5946, 7, 9latlem12 16032 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( z  e.  (
Base `  K )  /\  ( P  .\/  v
)  e.  ( Base `  K )  /\  ( Q  .\/  ( R `  F ) )  e.  ( Base `  K
) ) )  -> 
( ( z  .<_  ( P  .\/  v )  /\  z  .<_  ( Q 
.\/  ( R `  F ) ) )  <-> 
z  .<_  ( ( P 
.\/  v )  ./\  ( Q  .\/  ( R `
 F ) ) ) ) )
6044, 48, 52, 58, 59syl13anc 1232 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( ( z 
.<_  ( P  .\/  v
)  /\  z  .<_  ( Q  .\/  ( R `
 F ) ) )  <->  z  .<_  ( ( P  .\/  v ) 
./\  ( Q  .\/  ( R `  F ) ) ) ) )
6114breq2i 4403 . . . . . 6  |-  ( z 
.<_  N  <->  z  .<_  ( ( P  .\/  v ) 
./\  ( Q  .\/  ( R `  F ) ) ) )
6260, 61syl6bbr 263 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( ( z 
.<_  ( P  .\/  v
)  /\  z  .<_  ( Q  .\/  ( R `
 F ) ) )  <->  z  .<_  N ) )
6362biimpd 207 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( ( z 
.<_  ( P  .\/  v
)  /\  z  .<_  ( Q  .\/  ( R `
 F ) ) )  ->  z  .<_  N ) )
6442, 63mpand 673 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( z  .<_  ( Q  .\/  ( R `
 F ) )  ->  z  .<_  N ) )
6541, 64mtod 177 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  z  .<_  ( Q  .\/  ( R `
 F ) ) )
667, 11, 12, 13trlle 33202 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
671, 5, 66syl2anc 659 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  .<_  W )
68 simp13r 1113 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  Q  .<_  W )
69 nbrne2 4413 . . . 4  |-  ( ( ( R `  F
)  .<_  W  /\  -.  Q  .<_  W )  -> 
( R `  F
)  =/=  Q )
7067, 68, 69syl2anc 659 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  =/=  Q
)
717, 8, 10hlatexch1 32412 . . 3  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  z  e.  A  /\  Q  e.  A
)  /\  ( R `  F )  =/=  Q
)  ->  ( ( R `  F )  .<_  ( Q  .\/  z
)  ->  z  .<_  ( Q  .\/  ( R `
 F ) ) ) )
7219, 56, 45, 53, 70, 71syl131anc 1243 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( ( R `
 F )  .<_  ( Q  .\/  z )  ->  z  .<_  ( Q 
.\/  ( R `  F ) ) ) )
7365, 72mtod 177 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  ( R `  F )  .<_  ( Q 
.\/  z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   Basecbs 14841   lecple 14916   joincjn 15897   meetcmee 15898   0.cp0 15991   Latclat 15999   Atomscatm 32281   AtLatcal 32282   HLchlt 32368   LHypclh 33001   LTrncltrn 33118   trLctrl 33176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-map 7459  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-p1 15994  df-lat 16000  df-clat 16062  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-llines 32515  df-psubsp 32520  df-pmap 32521  df-padd 32813  df-lhyp 33005  df-laut 33006  df-ldil 33121  df-ltrn 33122  df-trl 33177
This theorem is referenced by:  cdlemg28b  33722
  Copyright terms: Public domain W3C validator