Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg27b Structured version   Unicode version

Theorem cdlemg27b 35367
Description: TODO: Fix comment. (Contributed by NM, 28-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
Assertion
Ref Expression
cdlemg27b  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  ( R `  F )  .<_  ( Q 
.\/  z ) )

Proof of Theorem cdlemg27b
StepHypRef Expression
1 simp11 1021 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 1022 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 1023 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp22 1025 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( v  e.  A  /\  v  .<_  W ) )
5 simp23l 1112 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  F  e.  T
)
6 simp31 1027 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  v  =/=  ( R `  F )
)
7 cdlemg12.l . . . . . 6  |-  .<_  =  ( le `  K )
8 cdlemg12.j . . . . . 6  |-  .\/  =  ( join `  K )
9 cdlemg12.m . . . . . 6  |-  ./\  =  ( meet `  K )
10 cdlemg12.a . . . . . 6  |-  A  =  ( Atoms `  K )
11 cdlemg12.h . . . . . 6  |-  H  =  ( LHyp `  K
)
12 cdlemg12.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
13 cdlemg12b.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
14 cdlemg31.n . . . . . 6  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
157, 8, 9, 10, 11, 12, 13, 14cdlemg31b0a 35366 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K ) ) )
161, 2, 3, 4, 5, 6, 15syl132anc 1241 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K
) ) )
17 simp23r 1113 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  z  =/=  N
)
1817adantr 465 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  ( N  e.  A  \/  N  =  ( 0. `  K
) ) )  -> 
z  =/=  N )
19 simp11l 1102 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  K  e.  HL )
2019adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  K  e.  HL )
21 hlatl 34032 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  AtLat )
2220, 21syl 16 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  K  e.  AtLat
)
23 simpl21 1069 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  z  e.  A )
24 simpr 461 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  N  e.  A )
257, 10atcmp 33983 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  z  e.  A  /\  N  e.  A )  ->  (
z  .<_  N  <->  z  =  N ) )
2622, 23, 24, 25syl3anc 1223 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  ( z  .<_  N  <->  z  =  N ) )
2726necon3bbid 2707 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  ( -.  z  .<_  N  <->  z  =/=  N ) )
2819adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  K  e.  HL )
2928, 21syl 16 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  K  e.  AtLat
)
30 simpl21 1069 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  z  e.  A )
31 eqid 2460 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
327, 31, 10atnle0 33981 . . . . . . . . 9  |-  ( ( K  e.  AtLat  /\  z  e.  A )  ->  -.  z  .<_  ( 0. `  K ) )
3329, 30, 32syl2anc 661 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  -.  z  .<_  ( 0. `  K
) )
34 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  N  =  ( 0. `  K ) )
3534breq2d 4452 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  ( z  .<_  N  <->  z  .<_  ( 0.
`  K ) ) )
3633, 35mtbird 301 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  -.  z  .<_  N )
3717adantr 465 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  z  =/=  N )
3836, 372thd 240 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  ( -.  z  .<_  N  <->  z  =/=  N ) )
3927, 38jaodan 783 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  ( N  e.  A  \/  N  =  ( 0. `  K
) ) )  -> 
( -.  z  .<_  N 
<->  z  =/=  N ) )
4018, 39mpbird 232 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  ( N  e.  A  \/  N  =  ( 0. `  K
) ) )  ->  -.  z  .<_  N )
4116, 40mpdan 668 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  z  .<_  N )
42 simp32 1028 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  z  .<_  ( P 
.\/  v ) )
43 hllat 34035 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
4419, 43syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  K  e.  Lat )
45 simp21 1024 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  z  e.  A
)
46 eqid 2460 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
4746, 10atbase 33961 . . . . . . . 8  |-  ( z  e.  A  ->  z  e.  ( Base `  K
) )
4845, 47syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  z  e.  (
Base `  K )
)
49 simp12l 1104 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  P  e.  A
)
50 simp22l 1110 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  v  e.  A
)
5146, 8, 10hlatjcl 34038 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  v  e.  A )  ->  ( P  .\/  v
)  e.  ( Base `  K ) )
5219, 49, 50, 51syl3anc 1223 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( P  .\/  v )  e.  (
Base `  K )
)
53 simp13l 1106 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  Q  e.  A
)
54 simp33 1029 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( F `  P )  =/=  P
)
557, 10, 11, 12, 13trlat 34840 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
561, 2, 5, 54, 55syl112anc 1227 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
5746, 8, 10hlatjcl 34038 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  ( R `  F )  e.  A )  -> 
( Q  .\/  ( R `  F )
)  e.  ( Base `  K ) )
5819, 53, 56, 57syl3anc 1223 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( Q  .\/  ( R `  F ) )  e.  ( Base `  K ) )
5946, 7, 9latlem12 15554 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( z  e.  (
Base `  K )  /\  ( P  .\/  v
)  e.  ( Base `  K )  /\  ( Q  .\/  ( R `  F ) )  e.  ( Base `  K
) ) )  -> 
( ( z  .<_  ( P  .\/  v )  /\  z  .<_  ( Q 
.\/  ( R `  F ) ) )  <-> 
z  .<_  ( ( P 
.\/  v )  ./\  ( Q  .\/  ( R `
 F ) ) ) ) )
6044, 48, 52, 58, 59syl13anc 1225 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( ( z 
.<_  ( P  .\/  v
)  /\  z  .<_  ( Q  .\/  ( R `
 F ) ) )  <->  z  .<_  ( ( P  .\/  v ) 
./\  ( Q  .\/  ( R `  F ) ) ) ) )
6114breq2i 4448 . . . . . 6  |-  ( z 
.<_  N  <->  z  .<_  ( ( P  .\/  v ) 
./\  ( Q  .\/  ( R `  F ) ) ) )
6260, 61syl6bbr 263 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( ( z 
.<_  ( P  .\/  v
)  /\  z  .<_  ( Q  .\/  ( R `
 F ) ) )  <->  z  .<_  N ) )
6362biimpd 207 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( ( z 
.<_  ( P  .\/  v
)  /\  z  .<_  ( Q  .\/  ( R `
 F ) ) )  ->  z  .<_  N ) )
6442, 63mpand 675 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( z  .<_  ( Q  .\/  ( R `
 F ) )  ->  z  .<_  N ) )
6541, 64mtod 177 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  z  .<_  ( Q  .\/  ( R `
 F ) ) )
667, 11, 12, 13trlle 34855 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
671, 5, 66syl2anc 661 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  .<_  W )
68 simp13r 1107 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  Q  .<_  W )
69 nbrne2 4458 . . . 4  |-  ( ( ( R `  F
)  .<_  W  /\  -.  Q  .<_  W )  -> 
( R `  F
)  =/=  Q )
7067, 68, 69syl2anc 661 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  =/=  Q
)
717, 8, 10hlatexch1 34066 . . 3  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  z  e.  A  /\  Q  e.  A
)  /\  ( R `  F )  =/=  Q
)  ->  ( ( R `  F )  .<_  ( Q  .\/  z
)  ->  z  .<_  ( Q  .\/  ( R `
 F ) ) ) )
7219, 56, 45, 53, 70, 71syl131anc 1236 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( ( R `
 F )  .<_  ( Q  .\/  z )  ->  z  .<_  ( Q 
.\/  ( R `  F ) ) ) )
7365, 72mtod 177 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  ( R `  F )  .<_  ( Q 
.\/  z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   Basecbs 14479   lecple 14551   joincjn 15420   meetcmee 15421   0.cp0 15513   Latclat 15521   Atomscatm 33935   AtLatcal 33936   HLchlt 34022   LHypclh 34655   LTrncltrn 34772   trLctrl 34829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-map 7412  df-poset 15422  df-plt 15434  df-lub 15450  df-glb 15451  df-join 15452  df-meet 15453  df-p0 15515  df-p1 15516  df-lat 15522  df-clat 15584  df-oposet 33848  df-ol 33850  df-oml 33851  df-covers 33938  df-ats 33939  df-atl 33970  df-cvlat 33994  df-hlat 34023  df-llines 34169  df-psubsp 34174  df-pmap 34175  df-padd 34467  df-lhyp 34659  df-laut 34660  df-ldil 34775  df-ltrn 34776  df-trl 34830
This theorem is referenced by:  cdlemg28b  35374
  Copyright terms: Public domain W3C validator