Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg26zz Structured version   Unicode version

Theorem cdlemg26zz 34335
Description: cdlemg16zz 34304 restated for easier studying. TODO: Discard this after everything is figured out. (Contributed by NM, 26-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg26zz  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  ( R `  F )  .<_  ( Q  .\/  z
)  /\  -.  ( R `  G )  .<_  ( Q  .\/  z
) ) )  -> 
( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  W )  =  ( ( z 
.\/  ( F `  ( G `  z ) ) )  ./\  W
) )

Proof of Theorem cdlemg26zz
StepHypRef Expression
1 cdlemg12.l . 2  |-  .<_  =  ( le `  K )
2 cdlemg12.j . 2  |-  .\/  =  ( join `  K )
3 cdlemg12.m . 2  |-  ./\  =  ( meet `  K )
4 cdlemg12.a . 2  |-  A  =  ( Atoms `  K )
5 cdlemg12.h . 2  |-  H  =  ( LHyp `  K
)
6 cdlemg12.t . 2  |-  T  =  ( ( LTrn `  K
) `  W )
7 cdlemg12b.r . 2  |-  R  =  ( ( trL `  K
) `  W )
81, 2, 3, 4, 5, 6, 7cdlemg25zz 34334 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  ( R `  F )  .<_  ( Q  .\/  z
)  /\  -.  ( R `  G )  .<_  ( Q  .\/  z
) ) )  -> 
( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  W )  =  ( ( z 
.\/  ( F `  ( G `  z ) ) )  ./\  W
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   lecple 14245   joincjn 15114   meetcmee 15115   Atomscatm 32908   HLchlt 32995   LHypclh 33628   LTrncltrn 33745   trLctrl 33802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-riotaBAD 32604
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1st 6577  df-2nd 6578  df-undef 6792  df-map 7216  df-poset 15116  df-plt 15128  df-lub 15144  df-glb 15145  df-join 15146  df-meet 15147  df-p0 15209  df-p1 15210  df-lat 15216  df-clat 15278  df-oposet 32821  df-ol 32823  df-oml 32824  df-covers 32911  df-ats 32912  df-atl 32943  df-cvlat 32967  df-hlat 32996  df-llines 33142  df-lplanes 33143  df-lvols 33144  df-lines 33145  df-psubsp 33147  df-pmap 33148  df-padd 33440  df-lhyp 33632  df-laut 33633  df-ldil 33748  df-ltrn 33749  df-trl 33803
This theorem is referenced by:  cdlemg28b  34347
  Copyright terms: Public domain W3C validator