Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg1cex Structured version   Unicode version

Theorem cdlemg1cex 35402
Description: Any translation is one of our  F s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf 35377? (Contributed by NM, 17-Apr-2013.)
Hypotheses
Ref Expression
cdlemg1c.l  |-  .<_  =  ( le `  K )
cdlemg1c.a  |-  A  =  ( Atoms `  K )
cdlemg1c.h  |-  H  =  ( LHyp `  K
)
cdlemg1c.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemg1cex  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( F  e.  T  <->  E. p  e.  A  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `
 p )  =  q ) ) ) )
Distinct variable groups:    f, p, q, A    f, F, p, q    f, H, p, q    f, K, p, q    .<_ , f, p, q    T, f, p, q    f, W, p, q

Proof of Theorem cdlemg1cex
StepHypRef Expression
1 cdlemg1c.l . . . . . 6  |-  .<_  =  ( le `  K )
2 cdlemg1c.a . . . . . 6  |-  A  =  ( Atoms `  K )
3 cdlemg1c.h . . . . . 6  |-  H  =  ( LHyp `  K
)
41, 2, 3lhpexnle 34820 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  -.  p  .<_  W )
54adantr 465 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  E. p  e.  A  -.  p  .<_  W )
6 cdlemg1c.t . . . . . . . . . 10  |-  T  =  ( ( LTrn `  K
) `  W )
71, 2, 3, 6ltrnel 34953 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  A  /\  -.  p  .<_  W ) )  ->  ( ( F `  p )  e.  A  /\  -.  ( F `  p )  .<_  W ) )
873expa 1196 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p  .<_  W ) )  ->  ( ( F `  p )  e.  A  /\  -.  ( F `  p )  .<_  W ) )
98simpld 459 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p  .<_  W ) )  ->  ( F `  p )  e.  A
)
10 simprr 756 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p  .<_  W ) )  ->  -.  p  .<_  W )
118simprd 463 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p  .<_  W ) )  ->  -.  ( F `  p )  .<_  W )
12 simpll 753 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simpr 461 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p  .<_  W ) )  ->  ( p  e.  A  /\  -.  p  .<_  W ) )
14 simplr 754 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p  .<_  W ) )  ->  F  e.  T )
151, 2, 3, 6cdlemeiota 35399 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  -.  p  .<_  W )  /\  F  e.  T )  ->  F  =  ( iota_ f  e.  T  ( f `  p )  =  ( F `  p ) ) )
1612, 13, 14, 15syl3anc 1228 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p  .<_  W ) )  ->  F  =  ( iota_ f  e.  T  ( f `  p
)  =  ( F `
 p ) ) )
17 breq1 4450 . . . . . . . . . 10  |-  ( q  =  ( F `  p )  ->  (
q  .<_  W  <->  ( F `  p )  .<_  W ) )
1817notbid 294 . . . . . . . . 9  |-  ( q  =  ( F `  p )  ->  ( -.  q  .<_  W  <->  -.  ( F `  p )  .<_  W ) )
19 eqeq2 2482 . . . . . . . . . . 11  |-  ( q  =  ( F `  p )  ->  (
( f `  p
)  =  q  <->  ( f `  p )  =  ( F `  p ) ) )
2019riotabidv 6247 . . . . . . . . . 10  |-  ( q  =  ( F `  p )  ->  ( iota_ f  e.  T  ( f `  p )  =  q )  =  ( iota_ f  e.  T  ( f `  p
)  =  ( F `
 p ) ) )
2120eqeq2d 2481 . . . . . . . . 9  |-  ( q  =  ( F `  p )  ->  ( F  =  ( iota_ f  e.  T  ( f `
 p )  =  q )  <->  F  =  ( iota_ f  e.  T  ( f `  p
)  =  ( F `
 p ) ) ) )
2218, 213anbi23d 1302 . . . . . . . 8  |-  ( q  =  ( F `  p )  ->  (
( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  (
iota_ f  e.  T  ( f `  p
)  =  q ) )  <->  ( -.  p  .<_  W  /\  -.  ( F `  p )  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `  p
)  =  ( F `
 p ) ) ) ) )
2322rspcev 3214 . . . . . . 7  |-  ( ( ( F `  p
)  e.  A  /\  ( -.  p  .<_  W  /\  -.  ( F `
 p )  .<_  W  /\  F  =  (
iota_ f  e.  T  ( f `  p
)  =  ( F `
 p ) ) ) )  ->  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `  p )  =  q ) ) )
249, 10, 11, 16, 23syl13anc 1230 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p  .<_  W ) )  ->  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `  p )  =  q ) ) )
2524exp32 605 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( p  e.  A  ->  ( -.  p  .<_  W  ->  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `
 p )  =  q ) ) ) ) )
2625reximdvai 2935 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. p  e.  A  -.  p  .<_  W  ->  E. p  e.  A  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `  p )  =  q ) ) ) )
275, 26mpd 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  E. p  e.  A  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `  p )  =  q ) ) )
2827ex 434 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( F  e.  T  ->  E. p  e.  A  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  (
iota_ f  e.  T  ( f `  p
)  =  q ) ) ) )
29 simp1 996 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  q  e.  A )  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `
 p )  =  q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
30 simp2l 1022 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  q  e.  A )  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `
 p )  =  q ) ) )  ->  p  e.  A
)
31 simp31 1032 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  q  e.  A )  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `
 p )  =  q ) ) )  ->  -.  p  .<_  W )
3230, 31jca 532 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  q  e.  A )  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `
 p )  =  q ) ) )  ->  ( p  e.  A  /\  -.  p  .<_  W ) )
33 simp2r 1023 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  q  e.  A )  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `
 p )  =  q ) ) )  ->  q  e.  A
)
34 simp32 1033 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  q  e.  A )  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `
 p )  =  q ) ) )  ->  -.  q  .<_  W )
3533, 34jca 532 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  q  e.  A )  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `
 p )  =  q ) ) )  ->  ( q  e.  A  /\  -.  q  .<_  W ) )
36 simp33 1034 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  q  e.  A )  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `
 p )  =  q ) ) )  ->  F  =  (
iota_ f  e.  T  ( f `  p
)  =  q ) )
371, 2, 3, 6cdlemg1ci2 35400 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  A  /\  -.  p  .<_  W )  /\  ( q  e.  A  /\  -.  q  .<_  W ) )  /\  F  =  ( iota_ f  e.  T  ( f `
 p )  =  q ) )  ->  F  e.  T )
3829, 32, 35, 36, 37syl31anc 1231 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  q  e.  A )  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `
 p )  =  q ) ) )  ->  F  e.  T
)
39383exp 1195 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( p  e.  A  /\  q  e.  A )  ->  (
( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  (
iota_ f  e.  T  ( f `  p
)  =  q ) )  ->  F  e.  T ) ) )
4039rexlimdvv 2961 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( E. p  e.  A  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `  p
)  =  q ) )  ->  F  e.  T ) )
4128, 40impbid 191 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( F  e.  T  <->  E. p  e.  A  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T  ( f `
 p )  =  q ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E.wrex 2815   class class class wbr 4447   ` cfv 5588   iota_crio 6244   lecple 14562   Atomscatm 34078   HLchlt 34165   LHypclh 34798   LTrncltrn 34915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-riotaBAD 33774
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-undef 7002  df-map 7422  df-poset 15433  df-plt 15445  df-lub 15461  df-glb 15462  df-join 15463  df-meet 15464  df-p0 15526  df-p1 15527  df-lat 15533  df-clat 15595  df-oposet 33991  df-ol 33993  df-oml 33994  df-covers 34081  df-ats 34082  df-atl 34113  df-cvlat 34137  df-hlat 34166  df-llines 34312  df-lplanes 34313  df-lvols 34314  df-lines 34315  df-psubsp 34317  df-pmap 34318  df-padd 34610  df-lhyp 34802  df-laut 34803  df-ldil 34918  df-ltrn 34919  df-trl 34973
This theorem is referenced by:  cdlemg2cex  35405
  Copyright terms: Public domain W3C validator