Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg1a Structured version   Unicode version

Theorem cdlemg1a 34533
 Description: Shorter expression for . TODO: fix comment. TODO: shorten using cdleme 34523 or vice-versa? Also, if not shortened with cdleme 34523, then it can be moved up to save repeating hypotheses. (Contributed by NM, 15-Apr-2013.)
Hypotheses
Ref Expression
cdlemg1.b
cdlemg1.l
cdlemg1.j
cdlemg1.m
cdlemg1.a
cdlemg1.h
cdlemg1.u
cdlemg1.d
cdlemg1.e
cdlemg1.g
cdlemg1.t
Assertion
Ref Expression
cdlemg1a
Distinct variable groups:   ,,,,,,   ,,,,,,   ,,,,,   ,,,,   ,,,,,   ,,,,,,   ,,,,,   ,,,,,   ,,,,,,   ,,,,,   ,,,,,   ,,,,,   ,,,,,   ,   ,   ,   ,   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   (,,,,)   ()   (,)   (,,,,)

Proof of Theorem cdlemg1a
StepHypRef Expression
1 cdlemg1.b . . . 4
2 cdlemg1.l . . . 4
3 cdlemg1.j . . . 4
4 cdlemg1.m . . . 4
5 cdlemg1.a . . . 4
6 cdlemg1.h . . . 4
7 cdlemg1.u . . . 4
8 cdlemg1.d . . . 4
9 cdlemg1.e . . . 4
10 cdlemg1.g . . . 4
11 cdlemg1.t . . . 4
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme50ltrn 34520 . . 3
13 simpll1 1027 . . . . . 6
14 simplr 754 . . . . . 6
1512ad2antrr 725 . . . . . 6
16 simpll2 1028 . . . . . 6
17 simpr 461 . . . . . . 7
181, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme17d 34461 . . . . . . . 8
1918ad2antrr 725 . . . . . . 7
2017, 19eqtr4d 2496 . . . . . 6
212, 5, 6, 11cdlemd 34170 . . . . . 6
2213, 14, 15, 16, 20, 21syl311anc 1233 . . . . 5
2322ex 434 . . . 4
2418adantr 465 . . . . 5
25 fveq1 5793 . . . . . 6
2625eqeq1d 2454 . . . . 5
2724, 26syl5ibrcom 222 . . . 4
2823, 27impbid 191 . . 3
2912, 28riota5 6182 . 2
3029eqcomd 2460 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wa 369   w3a 965   wceq 1370   wcel 1758   wne 2645  wral 2796  csb 3390  cif 3894   class class class wbr 4395   cmpt 4453  cfv 5521  crio 6155  (class class class)co 6195  cbs 14287  cple 14359  cjn 15228  cmee 15229  catm 33227  chlt 33314  clh 33947  cltrn 34064 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-riotaBAD 32923 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-iun 4276  df-iin 4277  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-1st 6682  df-2nd 6683  df-undef 6897  df-map 7321  df-poset 15230  df-plt 15242  df-lub 15258  df-glb 15259  df-join 15260  df-meet 15261  df-p0 15323  df-p1 15324  df-lat 15330  df-clat 15392  df-oposet 33140  df-ol 33142  df-oml 33143  df-covers 33230  df-ats 33231  df-atl 33262  df-cvlat 33286  df-hlat 33315  df-llines 33461  df-lplanes 33462  df-lvols 33463  df-lines 33464  df-psubsp 33466  df-pmap 33467  df-padd 33759  df-lhyp 33951  df-laut 33952  df-ldil 34067  df-ltrn 34068  df-trl 34122 This theorem is referenced by:  cdlemg1b2  34534
 Copyright terms: Public domain W3C validator