Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg19a Structured version   Unicode version

Theorem cdlemg19a 36552
 Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l
cdlemg12.j
cdlemg12.m
cdlemg12.a
cdlemg12.h
cdlemg12.t
cdlemg12b.r
Assertion
Ref Expression
cdlemg19a
Distinct variable groups:   ,   ,   ,   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()   ()

Proof of Theorem cdlemg19a
StepHypRef Expression
1 simp11l 1107 . . . . 5
2 hllat 35231 . . . . 5
31, 2syl 16 . . . 4
4 simp12l 1109 . . . . 5
5 simp11 1026 . . . . . 6
6 simp21 1029 . . . . . 6
7 cdlemg12.l . . . . . . 7
8 cdlemg12.a . . . . . . 7
9 cdlemg12.h . . . . . . 7
10 cdlemg12.t . . . . . . 7
117, 8, 9, 10ltrncoat 36011 . . . . . 6
125, 6, 4, 11syl3anc 1228 . . . . 5
13 eqid 2457 . . . . . 6
14 cdlemg12.j . . . . . 6
1513, 14, 8hlatjcl 35234 . . . . 5
161, 4, 12, 15syl3anc 1228 . . . 4
17 simp13l 1111 . . . . 5
187, 8, 9, 10ltrncoat 36011 . . . . . 6
195, 6, 17, 18syl3anc 1228 . . . . 5
2013, 14, 8hlatjcl 35234 . . . . 5
211, 17, 19, 20syl3anc 1228 . . . 4
22 cdlemg12.m . . . . 5
2313, 7, 22latmle1 15833 . . . 4
243, 16, 21, 23syl3anc 1228 . . 3
25 cdlemg12b.r . . . 4
267, 14, 22, 8, 9, 10, 25cdlemg18 36551 . . 3
277, 14, 22, 8, 9, 10, 25cdlemg18d 36550 . . . . 5
2813, 8atbase 35157 . . . . 5
2927, 28syl 16 . . . 4
30 simp11r 1108 . . . . 5
3113, 9lhpbase 35865 . . . . 5
3230, 31syl 16 . . . 4
3313, 7, 22latlem12 15835 . . . 4
343, 29, 16, 32, 33syl13anc 1230 . . 3
3524, 26, 34mpbi2and 921 . 2
36 hlatl 35228 . . . 4
371, 36syl 16 . . 3
38 simp12 1027 . . . 4
39 simp13 1028 . . . . . 6
40 simp21l 1113 . . . . . 6
41 simp21r 1114 . . . . . 6
42 simp32 1033 . . . . . 6
437, 14, 22, 8, 9, 10cdlemg11a 36506 . . . . . 6
445, 38, 39, 40, 41, 42, 43syl123anc 1245 . . . . 5
4544necomd 2728 . . . 4
467, 14, 22, 8, 9lhpat 35910 . . . 4
475, 38, 12, 45, 46syl112anc 1232 . . 3
487, 8atcmp 35179 . . 3
4937, 27, 47, 48syl3anc 1228 . 2
5035, 49mpbid 210 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 184   wa 369   w3a 973   wceq 1395   wcel 1819   wne 2652  wrex 2808   class class class wbr 4456  cfv 5594  (class class class)co 6296  cbs 14644  cple 14719  cjn 15700  cmee 15701  clat 15802  catm 35131  cal 35132  chlt 35218  clh 35851  cltrn 35968  ctrl 36026 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-riotaBAD 34827 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-undef 7020  df-map 7440  df-preset 15684  df-poset 15702  df-plt 15715  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-p0 15796  df-p1 15797  df-lat 15803  df-clat 15865  df-oposet 35044  df-ol 35046  df-oml 35047  df-covers 35134  df-ats 35135  df-atl 35166  df-cvlat 35190  df-hlat 35219  df-llines 35365  df-lplanes 35366  df-lvols 35367  df-lines 35368  df-psubsp 35370  df-pmap 35371  df-padd 35663  df-lhyp 35855  df-laut 35856  df-ldil 35971  df-ltrn 35972  df-trl 36027 This theorem is referenced by:  cdlemg19  36553
 Copyright terms: Public domain W3C validator