Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg18 Structured version   Unicode version

Theorem cdlemg18 34665
Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
 P )  =/= 
P )  /\  (
( R `  G
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q )
) ) )  .<_  W )
Distinct variable groups:    A, r    G, r    .\/ , r    .<_ , r    P, r    Q, r    W, r    F, r
Allowed substitution hints:    R( r)    T( r)    H( r)    K( r)    ./\ ( r)

Proof of Theorem cdlemg18
StepHypRef Expression
1 simp11 1018 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
 P )  =/= 
P )  /\  (
( R `  G
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp21r 1106 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
 P )  =/= 
P )  /\  (
( R `  G
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  G  e.  T )
3 simp12 1019 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
 P )  =/= 
P )  /\  (
( R `  G
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
4 cdlemg12.l . . 3  |-  .<_  =  ( le `  K )
5 cdlemg12.j . . 3  |-  .\/  =  ( join `  K )
6 cdlemg12.m . . 3  |-  ./\  =  ( meet `  K )
7 cdlemg12.a . . 3  |-  A  =  ( Atoms `  K )
8 cdlemg12.h . . 3  |-  H  =  ( LHyp `  K
)
9 cdlemg12.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
10 cdlemg12b.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
114, 5, 6, 7, 8, 9, 10cdlemg18d 34664 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
 P )  =/= 
P )  /\  (
( R `  G
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q )
) ) )  e.  A )
12 simp23 1023 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
 P )  =/= 
P )  /\  (
( R `  G
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( G `  P
)  =/=  P )
13 simp1 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
 P )  =/= 
P )  /\  (
( R `  G
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
14 simp21l 1105 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
 P )  =/= 
P )  /\  (
( R `  G
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  F  e.  T )
15 simp22 1022 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
 P )  =/= 
P )  /\  (
( R `  G
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  P  =/=  Q )
16 simp31 1024 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
 P )  =/= 
P )  /\  (
( R `  G
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( R `  G
)  .<_  ( P  .\/  Q ) )
17 simp33 1026 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
 P )  =/= 
P )  /\  (
( R `  G
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )
184, 5, 6, 7, 8, 9, 10cdlemg17 34660 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q )
) ) ) )  =  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) ) )
1913, 14, 2, 15, 12, 16, 17, 18syl133anc 1242 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
 P )  =/= 
P )  /\  (
( R `  G
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( G `  (
( P  .\/  ( F `  ( G `  P ) ) ) 
./\  ( Q  .\/  ( F `  ( G `
 Q ) ) ) ) )  =  ( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q )
) ) ) )
204, 7, 8, 9ltrnatlw 34166 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q )
) ) )  e.  A )  /\  (
( G `  P
)  =/=  P  /\  ( G `  ( ( P  .\/  ( F `
 ( G `  P ) ) ) 
./\  ( Q  .\/  ( F `  ( G `
 Q ) ) ) ) )  =  ( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q )
) ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  .<_  W )
211, 2, 3, 11, 12, 19, 20syl132anc 1237 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
 P )  =/= 
P )  /\  (
( R `  G
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q )
) ) )  .<_  W )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   E.wrex 2800   class class class wbr 4401   ` cfv 5527  (class class class)co 6201   lecple 14365   joincjn 15234   meetcmee 15235   Atomscatm 33247   HLchlt 33334   LHypclh 33967   LTrncltrn 34084   trLctrl 34141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-riotaBAD 32943
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-iin 4283  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-1st 6688  df-2nd 6689  df-undef 6903  df-map 7327  df-poset 15236  df-plt 15248  df-lub 15264  df-glb 15265  df-join 15266  df-meet 15267  df-p0 15329  df-p1 15330  df-lat 15336  df-clat 15398  df-oposet 33160  df-ol 33162  df-oml 33163  df-covers 33250  df-ats 33251  df-atl 33282  df-cvlat 33306  df-hlat 33335  df-llines 33481  df-lplanes 33482  df-lvols 33483  df-lines 33484  df-psubsp 33486  df-pmap 33487  df-padd 33779  df-lhyp 33971  df-laut 33972  df-ldil 34087  df-ltrn 34088  df-trl 34142
This theorem is referenced by:  cdlemg19a  34666
  Copyright terms: Public domain W3C validator