Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg17g Structured version   Unicode version

Theorem cdlemg17g 36845
Description: TODO: fix comment. (Contributed by NM, 9-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg17g  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( F `  P ) )  .<_  ( ( F `  P )  .\/  ( F `  Q
) ) )
Distinct variable groups:    A, r    G, r    .\/ , r    .<_ , r    P, r    Q, r    W, r
Allowed substitution hints:    R( r)    T( r)    F( r)    H( r)    K( r)    ./\ ( r)

Proof of Theorem cdlemg17g
StepHypRef Expression
1 simp11l 1105 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
2 simp11 1024 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp21 1027 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  F  e.  T
)
4 simp12l 1107 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  e.  A
)
5 cdlemg12.l . . . . 5  |-  .<_  =  ( le `  K )
6 cdlemg12.a . . . . 5  |-  A  =  ( Atoms `  K )
7 cdlemg12.h . . . . 5  |-  H  =  ( LHyp `  K
)
8 cdlemg12.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
95, 6, 7, 8ltrnat 36316 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
102, 3, 4, 9syl3anc 1226 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( F `  P )  e.  A
)
11 simp22 1028 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  G  e.  T
)
125, 6, 7, 8ltrncoat 36320 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  F  e.  T )  /\  P  e.  A )  ->  ( G `  ( F `  P ) )  e.  A )
132, 11, 3, 4, 12syl121anc 1231 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( F `  P ) )  e.  A )
14 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
155, 14, 6hlatlej2 35552 . . 3  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  ( G `  ( F `  P ) )  e.  A )  ->  ( G `  ( F `  P ) )  .<_  ( ( F `  P )  .\/  ( G `  ( F `  P ) ) ) )
161, 10, 13, 15syl3anc 1226 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( F `  P ) )  .<_  ( ( F `  P )  .\/  ( G `  ( F `  P )
) ) )
17 cdlemg12.m . . 3  |-  ./\  =  ( meet `  K )
18 cdlemg12b.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
195, 14, 17, 6, 7, 8, 18cdlemg17f 36844 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( F `
 P )  .\/  ( F `  Q ) )  =  ( ( F `  P ) 
.\/  ( G `  ( F `  P ) ) ) )
2016, 19breqtrrd 4410 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( F `  P ) )  .<_  ( ( F `  P )  .\/  ( F `  Q
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836    =/= wne 2591   E.wrex 2747   class class class wbr 4384   ` cfv 5513  (class class class)co 6218   lecple 14732   joincjn 15713   meetcmee 15714   Atomscatm 35440   HLchlt 35527   LHypclh 36160   LTrncltrn 36277   trLctrl 36335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-rep 4495  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513  ax-riotaBAD 35136
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-nel 2594  df-ral 2751  df-rex 2752  df-reu 2753  df-rmo 2754  df-rab 2755  df-v 3053  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4181  df-iun 4262  df-iin 4263  df-br 4385  df-opab 4443  df-mpt 4444  df-id 4726  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6180  df-ov 6221  df-oprab 6222  df-mpt2 6223  df-1st 6721  df-2nd 6722  df-undef 6942  df-map 7362  df-preset 15697  df-poset 15715  df-plt 15728  df-lub 15744  df-glb 15745  df-join 15746  df-meet 15747  df-p0 15809  df-p1 15810  df-lat 15816  df-clat 15878  df-oposet 35353  df-ol 35355  df-oml 35356  df-covers 35443  df-ats 35444  df-atl 35475  df-cvlat 35499  df-hlat 35528  df-llines 35674  df-lplanes 35675  df-lvols 35676  df-lines 35677  df-psubsp 35679  df-pmap 35680  df-padd 35972  df-lhyp 36164  df-laut 36165  df-ldil 36280  df-ltrn 36281  df-trl 36336
This theorem is referenced by:  cdlemg17i  36847
  Copyright terms: Public domain W3C validator