Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg16ALTN Structured version   Unicode version

Theorem cdlemg16ALTN 34641
Description: This version of cdlemg16 34640 uses cdlemg15a 34638 instead of cdlemg15 34639, in case cdlemg15 34639 ends up not being needed. TODO: FIX COMMENT (Contributed by NM, 6-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg16ALTN  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )

Proof of Theorem cdlemg16ALTN
StepHypRef Expression
1 simpl11 1063 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =  ( R `  G ) )  ->  K  e.  HL )
2 simpl12 1064 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =  ( R `  G ) )  ->  W  e.  H )
31, 2jca 532 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
4 simpl21 1066 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
5 simpl22 1067 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
6 simpl13 1065 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( F  e.  T  /\  G  e.  T
) )
7 simpr 461 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( R `  F
)  =  ( R `
 G ) )
8 simpl31 1069 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =/=  ( P  .\/  Q ) )
9 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
10 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
11 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
12 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
13 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
14 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
15 cdlemg12b.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
169, 10, 11, 12, 13, 14, 15cdlemg15a 34638 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( ( R `  F )  =  ( R `  G )  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
173, 4, 5, 6, 7, 8, 16syl312anc 1240 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =  ( R `  G ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
18 simpl11 1063 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  ->  K  e.  HL )
19 simpl12 1064 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  ->  W  e.  H )
2018, 19jca 532 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
21 simpl21 1066 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
22 simpl22 1067 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
23 simp13l 1103 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  F  e.  T )
2423adantr 465 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  ->  F  e.  T )
25 simp13r 1104 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  G  e.  T )
2625adantr 465 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  ->  G  e.  T )
27 simpl23 1068 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  ->  P  =/=  Q )
28 simpl32 1070 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  ->  -.  ( R `  F
)  .<_  ( P  .\/  Q ) )
29 simpl33 1071 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  ->  -.  ( R `  G
)  .<_  ( P  .\/  Q ) )
3028, 29jca 532 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  -> 
( -.  ( R `
 F )  .<_  ( P  .\/  Q )  /\  -.  ( R `
 G )  .<_  ( P  .\/  Q ) ) )
31 simpr 461 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  -> 
( R `  F
)  =/=  ( R `
 G ) )
32 simpl31 1069 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  -> 
( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =/=  ( P  .\/  Q ) )
339, 10, 11, 12, 13, 14, 15cdlemg12 34633 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( -.  ( R `  F
)  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) )  /\  ( R `  F )  =/=  ( R `  G
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
3420, 21, 22, 24, 26, 27, 30, 31, 32, 33syl333anc 1251 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q
)  /\  ( (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
)  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  /\  ( R `  F )  =/=  ( R `  G ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
3517, 34pm2.61dane 2770 1  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   class class class wbr 4401   ` cfv 5527  (class class class)co 6201   lecple 14365   joincjn 15234   meetcmee 15235   Atomscatm 33247   HLchlt 33334   LHypclh 33967   LTrncltrn 34084   trLctrl 34141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-riotaBAD 32943
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-iin 4283  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-1st 6688  df-2nd 6689  df-undef 6903  df-map 7327  df-poset 15236  df-plt 15248  df-lub 15264  df-glb 15265  df-join 15266  df-meet 15267  df-p0 15329  df-p1 15330  df-lat 15336  df-clat 15398  df-oposet 33160  df-ol 33162  df-oml 33163  df-covers 33250  df-ats 33251  df-atl 33282  df-cvlat 33306  df-hlat 33335  df-llines 33481  df-lplanes 33482  df-lvols 33483  df-lines 33484  df-psubsp 33486  df-pmap 33487  df-padd 33779  df-lhyp 33971  df-laut 33972  df-ldil 34087  df-ltrn 34088  df-trl 34142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator