Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg15 Structured version   Unicode version

Theorem cdlemg15 34135
Description: Eliminate the  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) condition from cdlemg13 34131. TODO: FIX COMMENT. (Contributed by NM, 25-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )

Proof of Theorem cdlemg15
StepHypRef Expression
1 simpl11 1080 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simpl12 1081 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simpl13 1082 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simpl2l 1058 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q ) )  ->  F  e.  T )
5 simpl2r 1059 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q ) )  ->  G  e.  T )
6 simpr 462 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q ) )  ->  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =  ( P 
.\/  Q ) )
7 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
8 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
9 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
10 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
11 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
12 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
137, 8, 9, 10, 11, 12cdlemg8 34110 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
141, 2, 3, 4, 5, 6, 13syl132anc 1282 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
15 simpl1 1008 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
16 simpl2 1009 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) )  ->  ( F  e.  T  /\  G  e.  T ) )
17 simpl3 1010 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) )  ->  ( R `  F )  =  ( R `  G ) )
18 simpr 462 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) )  ->  ( ( F `
 ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) )
19 cdlemg12b.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
207, 8, 9, 10, 11, 12, 19cdlemg15a 34134 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( ( R `  F )  =  ( R `  G )  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
2115, 16, 17, 18, 20syl112anc 1268 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
2214, 21pm2.61dane 2688 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2599   class class class wbr 4366   ` cfv 5544  (class class class)co 6249   lecple 15140   joincjn 16132   meetcmee 16133   Atomscatm 32741   HLchlt 32828   LHypclh 33461   LTrncltrn 33578   trLctrl 33636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-riotaBAD 32437
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-iun 4244  df-iin 4245  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-1st 6751  df-2nd 6752  df-undef 6975  df-map 7429  df-preset 16116  df-poset 16134  df-plt 16147  df-lub 16163  df-glb 16164  df-join 16165  df-meet 16166  df-p0 16228  df-p1 16229  df-lat 16235  df-clat 16297  df-oposet 32654  df-ol 32656  df-oml 32657  df-covers 32744  df-ats 32745  df-atl 32776  df-cvlat 32800  df-hlat 32829  df-llines 32975  df-lplanes 32976  df-lvols 32977  df-lines 32978  df-psubsp 32980  df-pmap 32981  df-padd 33273  df-lhyp 33465  df-laut 33466  df-ldil 33581  df-ltrn 33582  df-trl 33637
This theorem is referenced by:  cdlemg16  34136  cdlemg39  34195
  Copyright terms: Public domain W3C validator