Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg14g Structured version   Unicode version

Theorem cdlemg14g 34137
Description: TODO: FIX COMMENT (Contributed by NM, 22-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg14g  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )

Proof of Theorem cdlemg14g
StepHypRef Expression
1 simp1 1005 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp31 1041 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  ->  F  e.  T )
3 simp2l 1031 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
4 simp2r 1032 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
5 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
6 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
7 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
8 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
10 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
115, 6, 7, 8, 9, 10ltrnu 33602 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  Q ) )  ./\  W ) )
121, 2, 3, 4, 11syl211anc 1270 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  Q ) )  ./\  W ) )
13 simp33 1043 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( G `  P
)  =  P )
1413fveq2d 5881 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( F `  ( G `  P )
)  =  ( F `
 P ) )
1514oveq2d 6317 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( P  .\/  ( F `  ( G `  P ) ) )  =  ( P  .\/  ( F `  P ) ) )
1615oveq1d 6316 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( P 
.\/  ( F `  P ) )  ./\  W ) )
17 simp32 1042 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  ->  G  e.  T )
185, 8, 9, 10ltrnateq 33663 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( G `
 P )  =  P )  ->  ( G `  Q )  =  Q )
191, 17, 3, 4, 13, 18syl131anc 1277 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( G `  Q
)  =  Q )
2019fveq2d 5881 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( F `  ( G `  Q )
)  =  ( F `
 Q ) )
2120oveq2d 6317 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( Q  .\/  ( F `  ( G `  Q ) ) )  =  ( Q  .\/  ( F `  Q ) ) )
2221oveq1d 6316 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  Q ) )  ./\  W ) )
2312, 16, 223eqtr4d 2473 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   class class class wbr 4420   ` cfv 5597  (class class class)co 6301   lecple 15182   joincjn 16174   meetcmee 16175   Atomscatm 32745   HLchlt 32832   LHypclh 33465   LTrncltrn 33582   trLctrl 33640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-map 7478  df-preset 16158  df-poset 16176  df-plt 16189  df-lub 16205  df-glb 16206  df-join 16207  df-meet 16208  df-p0 16270  df-p1 16271  df-lat 16277  df-clat 16339  df-oposet 32658  df-ol 32660  df-oml 32661  df-covers 32748  df-ats 32749  df-atl 32780  df-cvlat 32804  df-hlat 32833  df-lhyp 33469  df-laut 33470  df-ldil 33585  df-ltrn 33586  df-trl 33641
This theorem is referenced by:  cdlemg20  34168  cdlemg29  34188  cdlemg39  34199
  Copyright terms: Public domain W3C validator