Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg14f Structured version   Unicode version

Theorem cdlemg14f 35326
Description: TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg14f  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )

Proof of Theorem cdlemg14f
StepHypRef Expression
1 simp1 991 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp32 1028 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  ->  G  e.  T )
3 simp2l 1017 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
4 simp2r 1018 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
5 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
6 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
7 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
8 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
10 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
115, 6, 7, 8, 9, 10ltrnu 34794 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( P  .\/  ( G `  P ) )  ./\  W )  =  ( ( Q 
.\/  ( G `  Q ) )  ./\  W ) )
121, 2, 3, 4, 11syl211anc 1229 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( ( P  .\/  ( G `  P ) )  ./\  W )  =  ( ( Q 
.\/  ( G `  Q ) )  ./\  W ) )
13 simp31 1027 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  ->  F  e.  T )
145, 8, 9, 10ltrnel 34812 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
151, 2, 3, 14syl3anc 1223 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
16 simp33 1029 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( F `  P
)  =  P )
175, 8, 9, 10ltrnateq 34854 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( F `  ( G `  P ) )  =  ( G `  P
) )
181, 13, 3, 15, 16, 17syl131anc 1236 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( F `  ( G `  P )
)  =  ( G `
 P ) )
1918oveq2d 6293 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( P  .\/  ( F `  ( G `  P ) ) )  =  ( P  .\/  ( G `  P ) ) )
2019oveq1d 6292 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( P 
.\/  ( G `  P ) )  ./\  W ) )
215, 8, 9, 10ltrnel 34812 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( ( G `  Q )  e.  A  /\  -.  ( G `  Q )  .<_  W ) )
221, 2, 4, 21syl3anc 1223 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( ( G `  Q )  e.  A  /\  -.  ( G `  Q )  .<_  W ) )
235, 8, 9, 10ltrnateq 34854 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( G `  Q )  e.  A  /\  -.  ( G `  Q )  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( F `  ( G `  Q ) )  =  ( G `  Q
) )
241, 13, 3, 22, 16, 23syl131anc 1236 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( F `  ( G `  Q )
)  =  ( G `
 Q ) )
2524oveq2d 6293 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( Q  .\/  ( F `  ( G `  Q ) ) )  =  ( Q  .\/  ( G `  Q ) ) )
2625oveq1d 6292 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  W )  =  ( ( Q 
.\/  ( G `  Q ) )  ./\  W ) )
2712, 20, 263eqtr4d 2513 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   lecple 14553   joincjn 15422   meetcmee 15423   Atomscatm 33937   HLchlt 34024   LHypclh 34657   LTrncltrn 34774   trLctrl 34831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-map 7414  df-poset 15424  df-plt 15436  df-lub 15452  df-glb 15453  df-join 15454  df-meet 15455  df-p0 15517  df-p1 15518  df-lat 15524  df-clat 15586  df-oposet 33850  df-ol 33852  df-oml 33853  df-covers 33940  df-ats 33941  df-atl 33972  df-cvlat 33996  df-hlat 34025  df-lhyp 34661  df-laut 34662  df-ldil 34777  df-ltrn 34778  df-trl 34832
This theorem is referenced by:  cdlemg15a  35328  cdlemg22  35360  cdlemg29  35378  cdlemg39  35389
  Copyright terms: Public domain W3C validator