Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg12e Structured version   Unicode version

Theorem cdlemg12e 35320
Description: TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg12e.z  |-  .0.  =  ( 0. `  K )
Assertion
Ref Expression
cdlemg12e  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =/=  .0.  )

Proof of Theorem cdlemg12e
StepHypRef Expression
1 simp33 1029 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  F )  =/=  ( R `  G
) )
2 simpl1 994 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
3 simpl21 1069 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  F  e.  T )
4 simpl22 1070 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  G  e.  T )
5 simpl23 1071 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  P  =/=  Q )
6 simpl31 1072 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  -.  ( R `  F )  .<_  ( P  .\/  Q
) )
7 simpl32 1073 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  -.  ( R `  G )  .<_  ( P  .\/  Q
) )
8 cdlemg12.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
9 cdlemg12.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
10 cdlemg12.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
11 cdlemg12.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
12 cdlemg12.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
13 cdlemg12.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
14 cdlemg12b.r . . . . . . . . 9  |-  R  =  ( ( trL `  K
) `  W )
158, 9, 10, 11, 12, 13, 14cdlemg12d 35319 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( R `  G
)  .<_  ( ( R `
 F )  .\/  ( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )
162, 3, 4, 5, 6, 7, 15syl123anc 1240 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  G )  .<_  ( ( R `  F ) 
.\/  ( ( ( F `  ( G `
 P ) ) 
.\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )
17 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( (
( F `  ( G `  P )
)  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) )  =  .0.  )
1817oveq2d 6293 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( R `  F )  .\/  ( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) )  =  ( ( R `  F )  .\/  .0.  ) )
19 simp11l 1102 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  K  e.  HL )
2019adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  K  e.  HL )
21 hlol 34035 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OL )
2220, 21syl 16 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  K  e.  OL )
23 simpl11 1066 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( K  e.  HL  /\  W  e.  H ) )
24 eqid 2462 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
2524, 12, 13, 14trlcl 34837 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
2623, 3, 25syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  F )  e.  (
Base `  K )
)
27 cdlemg12e.z . . . . . . . . . 10  |-  .0.  =  ( 0. `  K )
2824, 9, 27olj01 33899 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( R `  F )  e.  ( Base `  K
) )  ->  (
( R `  F
)  .\/  .0.  )  =  ( R `  F ) )
2922, 26, 28syl2anc 661 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( R `  F )  .\/  .0.  )  =  ( R `  F ) )
3018, 29eqtrd 2503 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( R `  F )  .\/  ( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) )  =  ( R `  F
) )
3116, 30breqtrd 4466 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  G )  .<_  ( R `
 F ) )
32 hlatl 34034 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  AtLat )
3320, 32syl 16 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  K  e.  AtLat
)
34 hlop 34036 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
3520, 34syl 16 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  K  e.  OP )
3624, 12, 13, 14trlcl 34837 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
3723, 4, 36syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  G )  e.  (
Base `  K )
)
38 simp12l 1104 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  P  e.  A )
3938adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  P  e.  A )
40 simp13l 1106 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  Q  e.  A )
4140adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  Q  e.  A )
4224, 9, 11hlatjcl 34040 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
4320, 39, 41, 42syl3anc 1223 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
4424, 8, 27opnlen0 33862 . . . . . . . . 9  |-  ( ( ( K  e.  OP  /\  ( R `  G
)  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  /\  -.  ( R `  G ) 
.<_  ( P  .\/  Q
) )  ->  ( R `  G )  =/=  .0.  )
4535, 37, 43, 7, 44syl31anc 1226 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  G )  =/=  .0.  )
46 simp11r 1103 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  W  e.  H )
4746adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  W  e.  H )
4827, 11, 12, 13, 14trlatn0 34845 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( ( R `  G )  e.  A  <->  ( R `  G )  =/=  .0.  ) )
4920, 47, 4, 48syl21anc 1222 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( R `  G )  e.  A  <->  ( R `  G )  =/=  .0.  ) )
5045, 49mpbird 232 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  G )  e.  A
)
5124, 8, 27opnlen0 33862 . . . . . . . . 9  |-  ( ( ( K  e.  OP  /\  ( R `  F
)  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  /\  -.  ( R `  F ) 
.<_  ( P  .\/  Q
) )  ->  ( R `  F )  =/=  .0.  )
5235, 26, 43, 6, 51syl31anc 1226 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  F )  =/=  .0.  )
5327, 11, 12, 13, 14trlatn0 34845 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( R `  F )  e.  A  <->  ( R `  F )  =/=  .0.  ) )
5420, 47, 3, 53syl21anc 1222 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( R `  F )  e.  A  <->  ( R `  F )  =/=  .0.  ) )
5552, 54mpbird 232 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  F )  e.  A
)
568, 11atcmp 33985 . . . . . . 7  |-  ( ( K  e.  AtLat  /\  ( R `  G )  e.  A  /\  ( R `  F )  e.  A )  ->  (
( R `  G
)  .<_  ( R `  F )  <->  ( R `  G )  =  ( R `  F ) ) )
5733, 50, 55, 56syl3anc 1223 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( R `  G )  .<_  ( R `  F
)  <->  ( R `  G )  =  ( R `  F ) ) )
5831, 57mpbid 210 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  G )  =  ( R `  F ) )
5958eqcomd 2470 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  F )  =  ( R `  G ) )
6059ex 434 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (
( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) )  =  .0. 
->  ( R `  F
)  =  ( R `
 G ) ) )
6160necon3d 2686 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (
( R `  F
)  =/=  ( R `
 G )  -> 
( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) )  =/=  .0.  ) )
621, 61mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =/=  .0.  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2657   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   Basecbs 14481   lecple 14553   joincjn 15422   meetcmee 15423   0.cp0 15515   OPcops 33846   OLcol 33848   Atomscatm 33937   AtLatcal 33938   HLchlt 34024   LHypclh 34657   LTrncltrn 34774   trLctrl 34831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-riotaBAD 33633
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-iin 4323  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6776  df-2nd 6777  df-undef 6994  df-map 7414  df-poset 15424  df-plt 15436  df-lub 15452  df-glb 15453  df-join 15454  df-meet 15455  df-p0 15517  df-p1 15518  df-lat 15524  df-clat 15586  df-oposet 33850  df-ol 33852  df-oml 33853  df-covers 33940  df-ats 33941  df-atl 33972  df-cvlat 33996  df-hlat 34025  df-llines 34171  df-lplanes 34172  df-lvols 34173  df-lines 34174  df-psubsp 34176  df-pmap 34177  df-padd 34469  df-lhyp 34661  df-laut 34662  df-ldil 34777  df-ltrn 34778  df-trl 34832
This theorem is referenced by:  cdlemg12g  35322
  Copyright terms: Public domain W3C validator