Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg12d Structured version   Unicode version

Theorem cdlemg12d 33629
Description: TODO: FIX COMMENT (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg12d  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( R `  G
)  .<_  ( ( R `
 F )  .\/  ( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )

Proof of Theorem cdlemg12d
StepHypRef Expression
1 simp11 1025 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp12 1026 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 1027 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp2l 1021 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  F  e.  T )
5 simp2r 1022 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  G  e.  T )
6 simp31 1031 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  P  =/=  Q )
7 simp33 1033 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  -.  ( R `  G
)  .<_  ( P  .\/  Q ) )
8 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
9 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
10 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
11 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
12 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
13 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
14 cdlemg12b.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
158, 9, 10, 11, 12, 13, 14cdlemg12c 33628 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  ( G `  P ) )  ./\  ( Q  .\/  ( G `  Q
) ) )  .<_  ( ( ( ( G `  P ) 
.\/  ( F `  ( G `  P ) ) )  ./\  (
( G `  Q
)  .\/  ( F `  ( G `  Q
) ) ) ) 
.\/  ( ( ( F `  ( G `
 P ) ) 
.\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )
161, 2, 3, 4, 5, 6, 7, 15syl133anc 1251 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  ( G `  P ) )  ./\  ( Q  .\/  ( G `  Q
) ) )  .<_  ( ( ( ( G `  P ) 
.\/  ( F `  ( G `  P ) ) )  ./\  (
( G `  Q
)  .\/  ( F `  ( G `  Q
) ) ) ) 
.\/  ( ( ( F `  ( G `
 P ) ) 
.\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )
178, 9, 10, 11, 12, 13, 14trlval4 33170 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  ( R `  G ) 
.<_  ( P  .\/  Q
) ) )  -> 
( R `  G
)  =  ( ( P  .\/  ( G `
 P ) ) 
./\  ( Q  .\/  ( G `  Q ) ) ) )
181, 5, 2, 3, 6, 7, 17syl132anc 1246 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( R `  G
)  =  ( ( P  .\/  ( G `
 P ) ) 
./\  ( Q  .\/  ( G `  Q ) ) ) )
198, 11, 12, 13ltrnel 33120 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
201, 5, 2, 19syl3anc 1228 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
218, 11, 12, 13ltrnel 33120 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( ( G `  Q )  e.  A  /\  -.  ( G `  Q )  .<_  W ) )
221, 5, 3, 21syl3anc 1228 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( G `  Q )  e.  A  /\  -.  ( G `  Q )  .<_  W ) )
23 simp12l 1108 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  P  e.  A )
24 simp13l 1110 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  Q  e.  A )
2511, 12, 13ltrn11at 33128 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
) )  ->  ( G `  P )  =/=  ( G `  Q
) )
261, 5, 23, 24, 6, 25syl113anc 1240 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( G `  P
)  =/=  ( G `
 Q ) )
27 simp32 1032 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  -.  ( R `  F
)  .<_  ( P  .\/  Q ) )
28 simp2 996 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( F  e.  T  /\  G  e.  T
) )
298, 9, 10, 11, 12, 13, 14cdlemg10c 33622 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( R `  F )  .<_  ( ( G `  P ) 
.\/  ( G `  Q ) )  <->  ( R `  F )  .<_  ( P 
.\/  Q ) ) )
301, 2, 3, 28, 29syl121anc 1233 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( R `  F )  .<_  ( ( G `  P ) 
.\/  ( G `  Q ) )  <->  ( R `  F )  .<_  ( P 
.\/  Q ) ) )
3127, 30mtbird 299 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  -.  ( R `  F
)  .<_  ( ( G `
 P )  .\/  ( G `  Q ) ) )
328, 9, 10, 11, 12, 13, 14trlval4 33170 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( ( G `  P )  e.  A  /\  -.  ( G `  P ) 
.<_  W )  /\  (
( G `  Q
)  e.  A  /\  -.  ( G `  Q
)  .<_  W ) )  /\  ( ( G `
 P )  =/=  ( G `  Q
)  /\  -.  ( R `  F )  .<_  ( ( G `  P )  .\/  ( G `  Q )
) ) )  -> 
( R `  F
)  =  ( ( ( G `  P
)  .\/  ( F `  ( G `  P
) ) )  ./\  ( ( G `  Q )  .\/  ( F `  ( G `  Q ) ) ) ) )
331, 4, 20, 22, 26, 31, 32syl132anc 1246 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( R `  F
)  =  ( ( ( G `  P
)  .\/  ( F `  ( G `  P
) ) )  ./\  ( ( G `  Q )  .\/  ( F `  ( G `  Q ) ) ) ) )
3433oveq1d 6247 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( R `  F )  .\/  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) ) )  =  ( ( ( ( G `  P ) 
.\/  ( F `  ( G `  P ) ) )  ./\  (
( G `  Q
)  .\/  ( F `  ( G `  Q
) ) ) ) 
.\/  ( ( ( F `  ( G `
 P ) ) 
.\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )
3516, 18, 343brtr4d 4422 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( R `  G
)  .<_  ( ( R `
 F )  .\/  ( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 972    = wceq 1403    e. wcel 1840    =/= wne 2596   class class class wbr 4392   ` cfv 5523  (class class class)co 6232   lecple 14806   joincjn 15787   meetcmee 15788   Atomscatm 32245   HLchlt 32332   LHypclh 32965   LTrncltrn 33082   trLctrl 33140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-riotaBAD 31941
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-reu 2758  df-rmo 2759  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-op 3976  df-uni 4189  df-iun 4270  df-iin 4271  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4735  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-riota 6194  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-1st 6736  df-2nd 6737  df-undef 6957  df-map 7377  df-preset 15771  df-poset 15789  df-plt 15802  df-lub 15818  df-glb 15819  df-join 15820  df-meet 15821  df-p0 15883  df-p1 15884  df-lat 15890  df-clat 15952  df-oposet 32158  df-ol 32160  df-oml 32161  df-covers 32248  df-ats 32249  df-atl 32280  df-cvlat 32304  df-hlat 32333  df-llines 32479  df-lplanes 32480  df-lvols 32481  df-lines 32482  df-psubsp 32484  df-pmap 32485  df-padd 32777  df-lhyp 32969  df-laut 32970  df-ldil 33085  df-ltrn 33086  df-trl 33141
This theorem is referenced by:  cdlemg12e  33630
  Copyright terms: Public domain W3C validator