Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg12 Structured version   Unicode version

Theorem cdlemg12 35321
 Description: TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l
cdlemg12.j
cdlemg12.m
cdlemg12.a
cdlemg12.h
cdlemg12.t
cdlemg12b.r
Assertion
Ref Expression
cdlemg12

Proof of Theorem cdlemg12
StepHypRef Expression
1 simp11l 1102 . . . 4
2 hllat 34035 . . . 4
31, 2syl 16 . . 3
4 simp12l 1104 . . . 4
5 simp11 1021 . . . . 5
6 simp21 1024 . . . . 5
7 simp22 1025 . . . . 5
8 cdlemg12.l . . . . . 6
9 cdlemg12.a . . . . . 6
10 cdlemg12.h . . . . . 6
11 cdlemg12.t . . . . . 6
128, 9, 10, 11ltrncoat 34815 . . . . 5
135, 6, 7, 4, 12syl121anc 1228 . . . 4
14 eqid 2460 . . . . 5
15 cdlemg12.j . . . . 5
1614, 15, 9hlatjcl 34038 . . . 4
171, 4, 13, 16syl3anc 1223 . . 3
18 simp13l 1106 . . . 4
198, 9, 10, 11ltrncoat 34815 . . . . 5
205, 6, 7, 18, 19syl121anc 1228 . . . 4
2114, 15, 9hlatjcl 34038 . . . 4
221, 18, 20, 21syl3anc 1223 . . 3
23 cdlemg12.m . . . 4
2414, 23latmcom 15551 . . 3
253, 17, 22, 24syl3anc 1223 . 2
26 cdlemg12b.r . . 3
278, 15, 23, 9, 10, 11, 26cdlemg12g 35320 . 2
28 simp13 1023 . . 3
29 simp12 1022 . . 3
30 simp23 1026 . . . 4
3130necomd 2731 . . 3
32 simp31l 1114 . . . . 5
3315, 9hlatjcom 34039 . . . . . . 7
341, 4, 18, 33syl3anc 1223 . . . . . 6
3534breq2d 4452 . . . . 5
3632, 35mtbid 300 . . . 4
37 simp31r 1115 . . . . 5
3834breq2d 4452 . . . . 5
3937, 38mtbid 300 . . . 4
4036, 39jca 532 . . 3
41 simp32 1028 . . 3
42 simp33 1029 . . . 4
4315, 9hlatjcom 34039 . . . . 5
441, 13, 20, 43syl3anc 1223 . . . 4
4542, 44, 343netr3d 2763 . . 3
468, 15, 23, 9, 10, 11, 26cdlemg12g 35320 . . 3
475, 28, 29, 6, 7, 31, 40, 41, 45, 46syl333anc 1255 . 2
4825, 27, 473eqtr3d 2509 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wa 369   w3a 968   wceq 1374   wcel 1762   wne 2655   class class class wbr 4440  cfv 5579  (class class class)co 6275  cbs 14479  cple 14551  cjn 15420  cmee 15421  clat 15521  catm 33935  chlt 34022  clh 34655  cltrn 34772  ctrl 34829 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-riotaBAD 33631 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-undef 6992  df-map 7412  df-poset 15422  df-plt 15434  df-lub 15450  df-glb 15451  df-join 15452  df-meet 15453  df-p0 15515  df-p1 15516  df-lat 15522  df-clat 15584  df-oposet 33848  df-ol 33850  df-oml 33851  df-covers 33938  df-ats 33939  df-atl 33970  df-cvlat 33994  df-hlat 34023  df-llines 34169  df-lplanes 34170  df-lvols 34171  df-lines 34172  df-psubsp 34174  df-pmap 34175  df-padd 34467  df-lhyp 34659  df-laut 34660  df-ldil 34775  df-ltrn 34776  df-trl 34830 This theorem is referenced by:  cdlemg16  35328  cdlemg16ALTN  35329
 Copyright terms: Public domain W3C validator